
Tools for Discovery, Refinement and Generalization of
Functional Properties by Enumerative Testing

Rudy Matela Braquehais

Doctor of Philosophy

University of York
Computer Science

October 2017

Abstract

This thesis presents techniques for discovery, refinement and generalization of properties
about functional programs. These techniques work by reasoning from test results: their
results are surprisingly accurate in practice, despite an inherent uncertainty in princi-
ple. These techniques are validated by corresponding implementations in Haskell and for
Haskell programs: Speculate, FitSpec and Extrapolate. Speculate discovers properties
given a collection of black-box function signatures. Properties discovered by Speculate
include inequalities and conditional equations. These properties can contribute to pro-
gram understanding, documentation and regression testing. FitSpec guides refinements of
properties based on results of black-box mutation testing. These refinements include com-
pletion and minimization of property sets. Extrapolate generalizes counterexamples of test
properties. Generalized counterexamples include repeated variables and side-conditions
and can inform the programmer what characterizes failures. Several example applications
demonstrate the effectiveness of Speculate, FitSpec and Extrapolate.

i

ii

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Thesis statement . 3
1.3 Contributions . 4
1.4 Chapter Preview . 4

2 Literature Review: property-based testing and its applications 7
2.1 Property-based Testing Tools . 7

2.1.1 QuickCheck: automated random testing 9
2.1.2 SmallCheck: exhaustive testing for small values 11
2.1.3 Lazy SmallCheck: using laziness to guide enumeration 12
2.1.4 Feat: Functional Enumeration of Algebraic Types 13
2.1.5 Neat: Non-strict Enumeration of Algebraic Types 14
2.1.6 GenCheck: generalized testing . 15
2.1.7 Irulan: implicit properties . 15
2.1.8 Reach: finding inputs that Reach a target expression 16
2.1.9 SmartCheck: improving counterexamples 16
2.1.10 Hedgehog: integrated shrinking . 17
2.1.11 Beyond Haskell . 17
2.1.12 Discussion and Comparison . 19

2.2 Applications of Property-based testing . 21
2.2.1 QuickSpec: discovery of equational laws 21
2.2.2 EasySpec: signature inference for property discovery 22
2.2.3 Bach: discovering relational specifications 22
2.2.4 MuCheck: syntactic mutation testing for Haskell 22
2.2.5 Lightweight Mutation Testing in Haskell 23

2.3 Summary . 23

3 LeanCheck: enumerative testing of higher-order properties 25
3.1 Introduction . 25
3.2 Listable Data Types and Fair Enumeration 26
3.3 Testable Properties and Tiers of Tests . 32
3.4 Conditional Properties and Data Invariants 33

iii

3.5 Higher Order Properties and Listable Functions 35
3.6 Example Applications and Results . 40
3.7 Comparison with Related Work . 42
3.8 Conclusion . 43

4 FitSpec: refining properties for functional testing 45
4.1 Introduction . 45
4.2 Definitions . 47
4.3 How FitSpec is Used . 49
4.4 How FitSpec Works . 51

4.4.1 Enumerating Mutants . 52
4.4.2 Testing Mutants against Properties 54
4.4.3 Searching for Survivors . 55
4.4.4 Conjecturing Equivalences and Implications 56
4.4.5 Controlling the Extent of Testing 57

4.5 Example Applications and Results . 58
4.5.1 Boolean Operators . 58
4.5.2 Sorting . 59
4.5.3 Binary Heaps . 61
4.5.4 Operations over Sets . 62
4.5.5 Powersets and Partitions . 64
4.5.6 Operations over Digraphs . 66
4.5.7 Performance Summary . 68

4.6 Comparison with Related Work . 68
4.7 Conclusions and Future Work . 71

5 Speculate: discovering conditional equations and inequalities by testing 75
5.1 Introduction . 75
5.2 Definitions . 77
5.3 How Speculate is Used . 78
5.4 How Speculate Works . 80

5.4.1 Equational Reasoning based on Term Rewriting 81
5.4.2 Equations and Equivalence Classes of Expressions 81
5.4.3 Inequalities between Class Representatives 84
5.4.4 Conditional Equations between Class Representatives 86

5.5 Example Applications and Results . 89
5.5.1 Finding properties of basic functions on lists 89
5.5.2 Sorting and Inserting: deducing their implementation 90
5.5.3 Binary search trees . 91
5.5.4 Digraphs . 92
5.5.5 Regular Expressions . 93
5.5.6 Performance Summary . 97

5.6 Comparison with Related Work . 98

iv

5.7 Conclusions and Future Work . 101

6 Extrapolate: generalizing counterexamples of test properties 105
6.1 Introduction . 105
6.2 How Extrapolate is Used . 107
6.3 How Extrapolate Works . 109

6.3.1 Searching for counterexamples . 109
6.3.2 Unconditional generalization . 110
6.3.3 Conditional generalization . 110

6.4 Example Applications and Results . 113
6.4.1 A sorting function: exact generalization 114
6.4.2 A calculator language . 114
6.4.3 Stress test: integer overflows . 115
6.4.4 A serializer and parser . 117
6.4.5 XMonad . 118
6.4.6 Generalizations as property refinements 119
6.4.7 Performance Summary . 122

6.5 Comparison with Related Work . 122
6.6 Conclusions and Future Work . 127

7 Conclusions & Future Work 131
7.1 Summary of Contributions . 131
7.2 Conclusions . 132
7.3 Future Work . 133

Bibliography 137

v

vi

List of Figures

2.1 Flow of ideas between property-testing tools for Haskell 8
2.2 Property-based testing tools placed within two axes. 9
2.3 MuCheck applied to a sorting function . 23

4.1 Conjecture strengths by percent of surviving mutants. 57

5.1 Full program applying Speculate to +, id and abs. 79
5.2 Diagram summarizing how Speculate works 80
5.3 Conditions ordered by logical implication. 87
5.4 Transformations performed on the ordering structure. 87

6.1 Full program applying Extrapolate to properties of sort. 108

vii

viii

List of Tables

2.1 Numbers of integer lists in successive sizes or depths. 14
2.2 Summary of differences between property-based testing tools for Haskell. . 20

3.1 Numbers of data values in successive tiers for several example data types. . 28
3.2 Numbers of values in each tier for two alternative Listable Int instances. 30
3.3 Numbers of functions in successive tiers for several types 39
3.4 Ratios of repetitions in different function enumerations when not enumer-

ating functions as tuples of results. With a fixed number of tests, as the
domain increases, the ratio of repetitions decreases. 40

3.5 Numbers of integer lists of successive sizes or depths. 43

4.1 Numbers of inequivalent mutants in successive tiers. 55
4.2 How enlarging the sorted element-type increases convergence parameters. . 60
4.3 Summary of Performance Results . 68
4.4 FitSpec contrasted with MuCheck and Duregård’s framework. 70

5.1 Equivalence classes and equations after considering all expressions of size 1. 82
5.2 Equivalence classes and equations after considering all expressions of size 2. 82
5.3 Equivalence classes and equations after considering all expressions of size 3. 83
5.4 How the number of expressions and classes increases with the size limit. . . 85
5.5 Regular expression axioms, their sizes and whether each is found 94
5.6 Summary of performance results . 97
5.7 Speculate contrasted with QuickSpec 1 and QuickSpec 2. 98
5.8 Timings and equation counts when generating unconditional equations . . 99
5.9 Needed size limits and times to generate inequalities and conditional laws . 100

6.1 Summary of results for five different applications. 121
6.2 Extrapolate contrasted with Lazy SmallCheck and SmartCheck. 123
6.3 Counterexamples for the count property of sort. 124
6.4 Counterexamples for the property involving noDiv0. 125
6.5 Counterexamples for the property about integer overflows. 125
6.6 Counterexamples for the parser property. 126
6.7 Counterexamples for prop_delete from XMonad. 126

ix

x

Acknowledgements

I am grateful to my PhD supervisor, Colin Runciman, for his advice and guidance in my
research. He gave me freedom to pursue my research in what I wanted and the way I
wanted. I always went out of my weekly supervision meetings really motivated to do my
job. Colin is a brilliant supervisor, his experience makes him able to predict where things
might go wrong. Often, when I did not follow his advice, indeed they did! In the words of
my colleague Glyn Faulkner: “Colin has a nasty habit of being right”.

I am grateful to the several people that provided reviews and technical discussion
during the writing of this thesis and the papers on which it is based: Maximilian Algehed,
Tim Atkinson, Ben Davis, Trevor Eliott, Glyn Faulkner, Ivaylo Hristakiev, Jeremy Jacob,
Lee Pike, Jamey Sharp, and anonymous reviewers. I thank Rob Alexander, my internal
examiner, for his comments on my work at an earlier stage, his role in meetings of my
Thesis Advisory Panel, and an engaging discussion during my viva. I thank John Hughes,
my external examiner, for agreeing to examine my thesis and an engaging discussion during
my viva.

I thank past and present members of the PLASMA group for interesting technical
discussion in the weekly PLASMA meetings and CSE hallways: Tim Atkinson, Chris Bak,
José Calderon, Mike Dodds, Nathan von Doorn, Ivaylo Hristakiev, Jeremy Jacob, Firas
Moalla, Detlef Plump, Jason Reich, Ben Simner, Ibrahim Shiyam, Michael Walker, Matt
Windsor and anyone else I may have forgotten. Cheers for those in this paragraph who were
my office mates in CSE/215 for their company and occasional office banter. Additional
thanks for the two who are co-authors of one of the papers in this thesis.

I am grateful to Nick Smallbone and Jonas Duregård for hospitality and many in-
teresting discussions about QuickSpec, Feat and FitSpec during a visit to the Chalmers
University of Technology in 2016. I am grateful to several people with whom I had inter-
esting discussions during the conferences I attended through the course of my PhD, and
to the Haskell community in general for being receptive.

Many thanks to my partner Camila, for her understanding, rationality, company and
ongoing support during my entire PhD. Additional thanks for enduring practice runs of
my seminars.

I am grateful to my family for their support during the several steps I had to take
before starting my PhD. I wouldn’t be here if it weren’t for them.

I would like to thank you, the reader, for interest in my research and thesis. Enjoy
reading it!

This work is supported by CAPES, Ministry of Education of Brazil: Grant BEX 9980-13-0.
Special thanks for them for providing the funding to do my PhD.

xi

xii

Declaration

I declare that this thesis is a presentation of original work and I am the sole author except
as indicated below. This work has not previously been presented for an award at this, or
any other, University. All sources are acknowledged as References.

The following chapters were based on papers published by me and my co-authors:
• Chapter 3: Rudy Braquehais, Michael Walker, José Manuel Calderón Trilla, Colin

Runciman. A simple incremental development of a property-based testing tool (func-
tional pearl). Unpublished draft, 2016-2017.

– I carried out most of the implementation and experiments;

– Colin carried out most of the experiments described in §3.6;

– All 4 authors contributed roughly the same amount to the paper;

– The chapter version significantly differs from the tutorial in the paper.

• Chapter 4: Rudy Braquehais and Colin Runciman. FitSpec: refining property sets
for functional testing. In Haskell 2016, pages 1-12. ACM, 2016.

– I carried out most of the implementation, experiments and comparative work;

– Colin carried out most of the experiments described in §4.5.4, §4.5.5 and §4.5.6;

– I contributed roughly 3/5 of the paper, Colin 2/5.

• Chapter 5: Rudy Braquehais and Colin Runciman. Speculate: discovering condi-
tional equations and inequalities about black-box functions by reasoning from test
results. In Haskell 2017, pages 40-51. ACM, 2017.

– I carried out most of the implementation, experiments and comparative work;

– I contributed roughly 2/3 of the paper, Colin 1/3.

• Chapter 6: Rudy Braquehais and Colin Runciman. Extrapolate: generalizing coun-
terexamples of functional test properties. In IFL’17: Implementation and Application
of Functional Languages (Draft Proceedings), pages 13-24. ACM, 2017.

– I carried out most of the implementation, experiments and comparative work;

– Colin carried out most of the experiments in §6.4.6;

– I contributed roughly 2/3 of the paper, Colin 1/3.

Throughout this Thesis, I avoid using the “I” pronoun favour of the “we” pronoun,
hereinafter referring to either: (most commonly) me and the reader, e.g. “we follow this
argument to [...]”; (rarely) me and my co-authors, e.g. “when implementing [...], we chose
to [...]”. This page contains the last occurrences of the “I” pronoun in this thesis!

xiii

xiv

Chapter 1

Introduction

This thesis is concerned with enriching properties of functional programs based on re-
sults of enumerative testing. We present techniques to automatically discover, refine and
generalize properties. These techniques are validated by corresponding implementations in
Haskell for testing of Haskell programs [Jones, 2003, Marlow, 2010, Hutton, 2016]. Example
applications demonstrate the effectiveness of these techniques and their implementations.

Testing and its cost The most common approach to maintain software quality and to
ensure that a program works is by testing. Software testing is expensive, accounting for
50% of a developer’s time [Myers et al., 2011, Claessen and Hughes, 2000]. Śliwerski et al.
[2005] estimated that between 30% to 40% of changes in Eclipse and Mozilla projects were
bug fixes. Bachmann et al. [2010] further shows a rate of 16% on the Apache Web server
project. If we could reduce the cost of testing, we would significantly reduce the overall
cost of developing software. One purpose of testing is to expose bugs earlier, or even during
implementation, potentially reducing the number of bug fixes and total development cost.

Example program Consider the following (faulty) sort function in Haskell:

sort :: Ord a => [a] -> [a]
sort [] = []
sort (x:xs) = sort (filter (< x)) xs

++ [x]
++ sort (filter (> x)) xs

Tests In a traditional approach to software testing, the programmer explicitly lists tests
by providing expected argument–result pairs for functions. This approach is usually known
as unit testing [Zhu et al., 1997]. For example, the following are unit tests for sort:

sortTests :: [Bool]
sortTests = [sort [] == []

, sort [1,2,3] == [1,2,3]
, sort [3,2,1] == [1,2,3]]

1

1 Introduction

Properties Tests can be parameterized over values. We call such parameterized tests
properties [Claessen and Hughes, 2000, Tillmann and Schulte, 2005]. The following are
two properties of a sort function:

prop_sortOrdered :: Ord a => [a] -> Bool
prop_sortOrdered xs = ordered (sort xs)

prop_sortCount :: Ord a => a -> [a] -> Bool
prop_sortCount x xs = count x (sort xs) == count x xs

The first property states that for all lists, sorting yields an ordered list. The second states
that the number of occurrences of any item does not change after sorting. Together these
two properties form a complete specification of sort. As single samples of test results, we
have:

prop_sortOrdered [1,2,3] == True
prop_sortCount 1 [1,2,3] == True

Property-based testing Property-based testing1 tools provide a check function that
takes a property, tests it by automatically generating test values, then reports the results.
The following illustrates typical usage:

> check (prop_sortOrdered :: [Int] -> Bool)
+++ OK, passed 200 tests.
> check (prop_sortCount :: Int -> [Int] -> Bool)
*** Failed! Falsifiable (after 4 tests):
0 [0,0]

The sort function follows the first property but fails the second due to a fault: it discards
repeated elements. To fix sort, we need to replace > with >=. �

The above example uses of check exemplify what makes property-based testing com-
pelling. When the system is able to find a counterexample it not only reports that the
property failed, it also reports the inputs that caused the property to fail. It is not the
user’s responsibility to find the crucial test values; they are found automatically. This is
the heart of property-based testing. The specified properties should hold for all inputs and
we leave it to the testing tool to generate appropriate test cases.

Property-based testing is particularly useful in the realm of functional programming,
a style of programming that models computation by the application of functions [Hutton,
2016]. The implementation of functions with side-effects is discouraged, or, in the case of
Haskell, prohibited. Different calls to a function with the same parameters should yield
the same values. This means we need to test properties only once per tuple of argument
values.

1Property-based testing as described here should not be confused with an unrelated technique, with the
same name, to test the security of Unix programs by partitioning them into sectors related to a high level
property [Fink and Levitt, 1994, Fink et al., 1994, Fink and Bishop, 1997]

2

Motivation 1.1

Property-based testing as means instead of as an end. Property-based testing can
also be applied beyond its original scope of simply testing programs. For example, it can
be used as part of a process to automatically generate program specifications [Claessen
et al., 2010, Smallbone et al., 2017].

1.1 Motivation

The main motivations for the work reported in this thesis are:
• to reduce the human effort needed for property-based testing;

• to reduce the computational effort needed for property-based testing;

• to increase the benefits obtained by property-based testing.
These goals are achieved by making properties and counterexamples the subject of com-
putational explorations and improvement.

1.2 Thesis statement

This thesis supports the following statement2:

Property-based testing can be used to analyse then refine property-sets as func-
tional specifications. It can be used to discover properties with side conditions
or in the form of inequalities. It can be used to generalize counterexamples of
properties with side conditions.

This claim is supported by the description of techniques to enrich (enhance or improve)
properties. We have implemented tools in the Haskell programming language using those
techniques, showing that they can be applied practically. This work is described in Chapters
3, 4, 5 and 6. The above claim is detailed in the following paragraphs.

Enumerative Testing We describe a technique for size-bounded enumerative property-
based testing. We will show that it is possible to define a size-bounded partial enumeration
of functions which can be useful to test higher-order properties and to analyse first-order
properties (Chapter 3). This technique is the foundation on which we develop other tech-
niques in this thesis.

Refinement Using property-based testing, we will show that it is possible to evaluate
minimality and completeness of property sets. Using results from this analysis, we will
show techniques to refine properties (Chapter 4).

2Note the variation in order compared with the Thesis title. We shall consider refinement before
discovery to reflect the chronological order in which research was carried out, and also because refining
already existing properties is easier than discovering properties out of nothing.

3

1 Introduction

Discovery We will go beyond previously reported methods for discovering properties,
showing that property-based testing can be used to discover properties involving inequali-
ties and implications between Haskell expressions (Chapter 5).

Generalization We will show that property-based testing can be used to generalize
counterexamples of test properties with repeated variables and side conditions. We will
show that these generalized counterexamples can inform programmer more fully and more
immediately what characterizes failures and that these generalized counterexamples can
also serve as another source of property refinement. (Chapter 6).

1.3 Contributions
The main contributions of this thesis are:

1. A technique to enumerate test values by size, including a size-bounded partial enu-
meration for functions. This technique serves as the foundation on which we build
all other techniques described in this thesis.

2. The LeanCheck tool for property-based testing in Haskell using the aforementioned
technique. This tool serves as the foundation on which we build other tools described
in this thesis.

3. A technique to refine properties about black-box functions, readily applicable to
purely functional programs. In addition to guiding completion of property-sets, this
technique is able to guide minimization.

4. The FitSpec tool that given a set of Haskell functions and properties about them,
automatically guides refinements of those properties.

5. A technique to automatically discover properties about black-box functions, read-
ily applicable to purely functional programs. In addition to equational laws, this
technique is also able to produce inequalities and conditional equations.

6. The Speculate tool that given a set of Haskell functions, automatically conjectures
properties about them.

7. A technique to automatically generalize counterexamples of properties allowing re-
peated variables and side-conditions.

8. The Extrapolate tool that is able to automatically discover and generalize counterex-
amples to properties.

1.4 Chapter Preview
Chapter 2 presents a summary of recent work in the area of property-based testing. It first
lists, describes and compares several existing property-based testing tools. It goes on to

4

Chapter Preview 1.4

list and describe some applications of property-based testing.
Chapter 3 presents LeanCheck and is concerned with the testing of properties. It

shows the implementation of LeanCheck covering enumeration of data values and how
properties are tested. It discusses conditional properties and data invariants. It shows the
implementation of an enumeration of functions and how they can be used to test higher
order properties.

Chapters 4–6 have the same structure: they show how each tool is used; describe how
each underlying technique works; provide example applications and results; and finally
compare and contrast each tool with relevant related work. Chapter 4 presents FitSpec
and is concerned with the refinement of properties. Chapter 5 presents Speculate and
is concerned with the discovery of properties. Chapter 6 presents Extrapolate and is
concerned with the generalization of counterexamples to properties.

Chapter 7 presents the conclusions of this research and outlines possible areas for future
work.

5

6

Chapter 2

Literature Review: property-based
testing and its applications

This chapter presents a summary of recent work in the area of property-based testing.
We give particular focus on work done in the Haskell language. Section 2.1 describes
several tools for property-based testing. Section 2.2 describes applications of property-
based testing beyond the testing of programs.

2.1 Property-based Testing Tools
Some early works introduced ideas very similar to property-based testing1. One of these
works is the DAISTS system [Gannon et al., 1981] in which algebraic properties about a
data structure are written to be used both as specification and for testing. In the case of
DAISTS though, the user had to manually insert the test cases.

Starting with QuickCheck in 2000 [Claessen and Hughes, 2000], a lot of research on
property-based testing has been conducted using the Haskell programming language. Sev-
eral tools for that purpose have been created, this section is a review of the most notable.
Figure 2.1 shows relationships between these tools. Figure 2.2 shows property-based test-
ing tools loosely placed along two axes: strict-lazy and enumerative-random. These tools
are later compared in §2.1.12.

Haskell has been the one of main settings for research in this area perhaps for two
reasons:
• Haskell is purely functional, results of functions only depend on their arguments. So

testing a property once per argument value is enough;

• Haskell’s typeclass machinery and partial application of functions make it convenient
to generate test values to properties (§3.2–§3.3).

1Other terms used to describe property-based testing or similar techniques include: random testing
[Claessen and Hughes, 2000], enumerative testing [Duregård et al., 2012], property testing [Allwood, 2011],
specification-based testing [Stocks and Carrington, 1996], contract-based testing [Aichernig, 2003] and
parameterized unit testing [Tillmann and Schulte, 2005]

7

2 Literature Review: property-based testing and its applications

Year:

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

QuickCheck

QuickCheck
w/ Shrinking

SmallCheck

Feat

GenCheck

Irulan

SmartCheck

Hedgehog

Lazy
SmallCheck

LeanCheck

Neat

Extrapolate

An arrow from A to B indicates B uses ideas of and/or is inspired by A.
Round, square and rounded nodes indicate random, enumerative and mixed test data generation.

Figure 2.1: Flow of ideas between property-testing tools for Haskell

8

Property-based Testing Tools 2.1

Figure 2.2: Property-based testing tools placed within two axes: strict–lazy and
enumerative–random.

2.1.1 QuickCheck: automated random testing

Claessen and Hughes [2000] introduced the first tool for property-based testing in Haskell,
QuickCheck. It generates test values randomly based on the types of arguments of the
properties being tested.

Testing properties with QuickCheck Recall the faulty sort function given in Chap-
ter 1 and a property stating that the counts of elements should not change after sorting:

sort :: Ord a => [a] -> [a]
sort [] = []
sort (x:xs) = sort (filter (< x)) xs

++ [x]
++ sort (filter (> x)) xs

9

2 Literature Review: property-based testing and its applications

prop_sortCount :: Ord a => a -> [a] -> Bool
prop_sortCount x xs = count x (sort xs) == count x xs

Testing with QuickCheck:

> quickCheck (prop_sortCount :: Int -> [Int] -> Bool)
*** Failed! Falsifiable (after 25 tests and 5 shrinks):
2 [2,2]

Again, our sort implementation had an intentional fault: it does not account for lists with
repeated elements. The counterexample is able to illustrate this:

> prop_sortCount 2 [2,2]
False
> count 2 (sort [2,2])
1
> sort [2,2]
[2]

Since test values are generated randomly, multiple executions of QuickCheck are not guar-
anteed to find the same failing cases:

> quickCheck (prop_length :: [Int] -> Bool)
*** Failed! Falsifiable (after 4 tests and 2 shrinks):
7 [7,7] �

Generating test values QuickCheck is able to generate test values for instances of the
Arbitrary typeclass. QuickCheck already provides Arbitrary instances for most standard
Haskell types.

QuickCheck provides a series of combinators that allow definition of Arbitrary in-
stances for user-defined types. For example, suppose a Nat type defined as a wrapper over
Ints:

newtype Nat = Nat Int deriving (Show, Eq, Ord)

An Arbitrary instance for Nat may be defined, using Haskell’s monadic do notation, as:

instance Arbitrary Nat where
arbitrary = do
x <- choose 0 12
return (Nat x)

that is, to generate a Nat value, choose an Int value between 0 and 12 (inclusive) then
apply the Nat constructor. �

For some types, it might be difficult to write instances that properly explore the test
space. This is recognized as one of the drawbacks of QuickCheck [Duregård et al., 2012]
and QuickCheck authors recommend analysing the distribution of generated test data.

10

Property-based Testing Tools 2.1

Small counterexamples and shrinking The original version of QuickCheck sometimes
returned quite large counterexamples due to the nature of random testing. Later versions
introduced shrinking [Claessen, 2012], a technique to reduce the size of counterexamples.
Arbitrary instances now can define the shrink function of type a -> [a]. Given a value,
shrink produces a finite list of values which are, in some sense, like the original but a
little smaller. What smaller means here is decided by the implementor of the Arbitrary
typeclass instance.

The following two runs of QuickCheck illustrate the benefit of shrinking. The first run
has shrinking turned off, as in the original QuickCheck, the second has shrinking activated:

> quickCheck (noShrinking (prop_sortCount :: Int -> [Int] -> Bool))
*** Failed! Falsifiable (after 15 tests):
-14 [-9,-14,-4,-10,6,-13,-14,10,-2]
> quickCheck (prop_sortCount :: Int -> [Int] -> Bool)
*** Failed! Falsifiable (after 65 tests and 10 shrinks):
-2 [-2,-2]

The problem of shrinking functions as test values is discussed and solved by Claessen [2012].
QuickCheck has become the de-facto standard for property-based testing in Haskell.

It is a well documented tool featuring in the Real World Haskell Book [O’Sullivan et al.,
2008] and some tutorials [Claessen et al., 2003, Hughes, 2010].

The original QuickCheck authors have created a version for Erlang [Arts et al., 2006],
QuviQ QuickCheck. It allows for integrated shrinking: users get the shrink for free by just
writing a generator; shrunk values obey data invariants by construction.

2.1.2 SmallCheck: exhaustive testing for small values

With principles similar to QuickCheck, SmallCheck [Runciman et al., 2008] is another
property-based testing tool for Haskell. But, instead of generating test values randomly,
SmallCheck generates test values enumeratively up to some limiting depth. SmallCheck
intentionally starts testing properties for small values. The choice to start with small values
is based on the regularity hypothesis [Bougé et al., 1986, Zhu et al., 1997]: if a program
satisfies a property on all test arguments up to some depth, then the program very likely
satisfies the property on all data. In the context of property-based testing, this hypothesis
means that counterexamples are almost always found for small values. The same minimal
counterexample is returned across different runs without the need for shrinking.

Running SmallCheck SmallCheck is run in a similar way to QuickCheck:

> smallCheck 3 (prop_length :: [Int] -> Bool)
Failed test no. 4:
0 [0,0]

Properties written for QuickCheck can be tested by SmallCheck with little or no alteration.
Search is limited by depth of test values rather than number of test cases.

11

2 Literature Review: property-based testing and its applications

Generating test values SmallCheck is able to test types which are instances of the
Serial typeclass, parallel to QuickCheck’s Arbitrary. Serial instances define a series
function which is a mapping of a integer depth to a list of values. Given its simplicity,
Serial instances are easier to write than Arbitrary instances.

Existential properties Since SmallCheck performs an exhaustive search, it provides
existential operators, exists and exists1. These operators are used to express existential
properties, like the following property over naturals:

prop_lessThanExists :: Nat -> Nat -> Bool
prop_lessThanExists x y = x <= y ==> exists $ \z -> x + z == y

If x is less than y, there exists a z such that the sum of x and z is equal to y.
In QuickCheck, existential predicates must be re-expressed as universal ones by intro-

ducing a Skolem2 function:

prop_lessthanexists :: Nat -> Nat -> Nat
prop_lessthanexists x y = x <= y ==> x + skolem x y == y
where
skolem x y == x - y

Depending on the property being tested, the Skolem implementation may not be obvious.

Limitations One of the limitations of SmallCheck is the rapid explosion of values on
increasing depth. Usually, when searching deeper, the next depth has one or more orders
of magnitude more values than the previous one. This is specially problematic for very
wide data types3, for example, the Template Haskell AST. Duregård et al. [2012] show
that when testing properties for those types, SmallCheck is not able to find even some very
simple faults.

2.1.3 Lazy SmallCheck: using laziness to guide enumeration

In the same paper as SmallCheck, Runciman et al. [2008] present Lazy SmallCheck. Sim-
ilarly to SmallCheck, Lazy SmallCheck does property-based testing by exhaustive search
up to some limiting depth. However, it uses laziness and partially defined values to guide
testing, greatly reducing the number of cases that need to be tested.

As an example, let’s first take a look at a function that checks if a list is ordered:

ordered :: Ord a => [a] -> Bool
ordered [] = True
ordered [x] = True
ordered (x:y:xs) = x <= y && ordered (y:xs)

2In the process of Skolemization, existential quantifiers are removed by introducing a Skolem function
that returns a witness for an existential statement using the universal variables.

3in which some constructors take a large number of arguments, such as Template Haskell’s [Sheard and
Jones, 2002] DataD constructor: DataD Cxt Name [TyVarBndr] [Con] [Name]

12

Property-based Testing Tools 2.1

This function is lazy. In other words, when passed the list [2,1,4,5,6,7,8], the function
will check only the first two elements, and as these are out of order, a False result is
returned without evaluating the rest of the list.

Now, let’s look at a property that uses the ordered function. For any ordered list,
sorting it will keep it the same:

prop_noop xs = ordered xs ==> xs == sort xs

If this property is tested using SmallCheck or QuickCheck, many test values for xs do
not satisfy the antecedent: many unordered lists are generated. Lazy SmallCheck cuts
search space by first testing partially defined values, those containing ⊥. Since 2:1:⊥
do not satisfy the condition in prop_noop, no list starting with 2 followed by 1 will. So
SmallCheck does not enumerate them.

Lazy SmallCheck can provide speedups over SmallCheck up to a few orders of magni-
tude for the same depth. For prop_noop tested at depth 8, SmallCheck does 4886521 tests
while Lazy SmallCheck does only 65525 tests.

Reich et al. [2013] add new features to Lazy SmallCheck, including the ability to test
functional values, support for existential properties, nested quantification and the display
of partial counterexamples.

Limitations As it is based on laziness, Lazy SmallCheck’s search space pruning does not
work for strict properties, those that need to fully evaluate all arguments to return True
or False.

2.1.4 Feat: Functional Enumeration of Algebraic Types

Feat [Duregård et al., 2012, Duregård, 2012, 2016] is a size-based enumerative property-
based testing tool. It does not suffer from the search space explosion problems of Small-
Check as values are explored by size rather than depth affording greater control on the
number of values being tested. Due to the way it is implemented, it allows random gener-
ation of test values.

Enumerating test values Feat works for types that are instances of the Enumerable
type class: those have an enumerate function. Predefined Enumerable instances for stan-
dard Haskell types are provided. The user can define enumerable instances using several
available combinators. The resulting code is very similar to SmallCheck’s.

Feat enumeration is based on an efficient indexing function index :: Int -> a that
maps an non-negative integer to a value in the enumeration. Feat partitions the set of
values by their size to obtain a function select :: Int -> Int -> a , that maps the
size and index of values of that size into a value. The size of a value is an arbitrary measure
depending on the type and defined in the Enumerable implementation, but usually counts
the number of constructors.

13

2 Literature Review: property-based testing and its applications

Table 2.1: Numbers of integer lists in successive sizes (for Feat) or depths (for SmallCheck).
SmallCheck’s depth 1, 2, 7, 36, 253, 2278, 25059, 325768, 4886521, 83070858, ...
Feat’s size 0, 1, 0, 0, 2, 2, 4, 12, 24, 52, 120, 264, 584, 1304, 2896, ...

Generating random test values Feat is able to compute arbitrary values in an enumer-
ation very efficiently. When enumerating [Bool]s, It takes less than a second to compute
the (1010000)th element:

> index (10^10000) :: [Bool]
[False,False,True,True,False,True,True,True,False,False,...]
(0.71 secs, 590625624 bytes)

To generate random test values using Feat, it is enough to map the index function into a
set of random integers.

Testing properties To test properties using Feat, the programmer should call the
featCheck function, that accepts a size limit and a property to be tested:

> featCheck 10 (prop_sortOrdered :: [Int] -> Bool)
--- Done. Tested 97 values

Controlling the enumeration As the size increases, the number of generated values
grows much more slowly than it does with increasing depth in SmallCheck. For wider
types, Feat provides a fine-grained control on the number of generated test cases. Table
2.1 shows the progression in the number of enumerated values using both methods for
integer lists.

Comparing with SmallCheck Duregård et al. [2012] compare Feat and SmallCheck in
a case study with properties over Template Haskell’s AST values. SmallCheck is not able
to find some very small counterexamples that Feat does find. This is due to the wideness of
AST values and the exploding depth of SmallCheck. Duregård et al. exclude QuickCheck
from the study mentioning the difficulty of writing a sensible Arbitrary instance for TH’s
AST values. They also exclude Lazy SmallCheck as the tested properties were strict in all
arguments.

Limitations Feat’s Hackage package testing-feat [Duregård, 2014] provides only the
exhaustive testing strategy: the random and mixed strategy must be implemented in an
application specific way after importing the library. Feat does not support enumeration of
functions: the authors note the relative difficulty of finding a suitable definition of size for
functions.

14

Property-based Testing Tools 2.1

2.1.5 Neat: Non-strict Enumeration of Algebraic Types

Neat [Duregård, 2016] mixes the idea of size-bounded enumeration of Feat with a clever
algorithm for search space pruning. Neat can be roughly seen as a size-bounded variation
of Lazy SmallCheck. Duregård [2016] provides several examples where Neat is able to find
faults where Lazy SmallCheck cannot.

2.1.6 GenCheck: generalized testing

Gordon J. Uszkay and Jacques Carette [2012] describe GenCheck as a generalized property-
based testing tool, able to perform random and enumerative testing. It has been developed
during the same period as Feat, and the two tools have similar goals.

Generating test values GenCheck’s generators are represented as a function from a
rank to a list of values. For lists of integers, the rank represents the length of the resulting
generated lists:

> take 5 $ genAll stdTestGens 0 :: [[Int]]
[[],[],[],[],[]]
> take 5 $ genAll stdTestGens 1 :: [[Int]]
[[-100],[-99],[-98],[-97],[-96]]
> take 5 $ genAll stdTestGens 2 :: [[Int]]
[[-100,-99],[-98,-97],[-96,-95],[-94,-93],[-92,-91]]

Using the same generator for types, one can use different strategies for test value generation
by calling a different top-level function. Some strategies test ranks enumeratively. Other
strategies selects random values from ranks uniformly.

Limitations As yet there is no published comparison of GenCheck with other property-
based testing tools.

2.1.7 Irulan: implicit properties

The tools presented so far all require the tester to provide explicit properties over the func-
tions being tested. Allwood [2011] notes that there are already many implicit properties
expected to hold for all programs. These properties include the absence of assertion errors,
incomplete pattern matches and other types of exceptions.

Generating test data and testing implicit properties Irulan infers how to generate
test data from the types of constructors; Then, for the module under test, it checks and
reports whether any exported functions throw exceptions.

Testing explicit properties Irulan is also able to do property testing. It searches then
tests any functions beginning in prop_ of resulting Bool type.

15

2 Literature Review: property-based testing and its applications

Limitations If functions expect that its arguments follow a constraining data invariant,
Irulan may falsely report a bug. Allwood recommends to flag these type of errors with
specific exceptions, then filter them out from the resulting Irulan output.

Irulan is currently unmaintained. The latest version, released in 2010, only works if
compiled using older versions of the Glasgow Haskell Compiler (6.* series).

2.1.8 Reach: finding inputs that Reach a target expression

Naylor and Runciman [2007] describe Reach, a tool that uses lazy narrowing to find inputs
that cause evaluation of marked target expressions. to find inputs that evaluate marked
target expressions. By marking an expression with an application of the special identity
function target, the user requests inputs that reach that path of execution. Given an
expression:

if ordered xs
then target (...)
else ...

Reach tries to find values for xs that reach the “then” branch.
Reach has more general applications. It can be used to find inputs that cause a program

to crash by marking positions that have unspecified behavior, e.g.: missing cases on pattern
matches. It can be used as an input data generator for other testing tools. Lastly, by using
a specially crafted identity function over booleans, Reach can be used directly for property-
based testing:

refute :: Bool -> Bool
refute True = True
refute False = target False

Then, to refute a property, it is enough to create an entry point that wraps around the
property being tested:

main :: Int -> [Int] -> Bool
main x xs = refute (prop_sortCount x xs)

Limitations This tool does not work directly on Haskell, but instead in a core language
that can be generated from a Haskell Program by the York Haskell Compiler.

2.1.9 SmartCheck: improving counterexamples

Initially motivated by the difficulty of writing custom instances for the shrink func-
tion (§2.1.1), specially on very complex data types, Pike [2014] introduces SmartCheck.
SmartCheck improves QuickCheck in two main points: a better algorithm for shrinking
and generalization of counterexamples.

16

Property-based Testing Tools 2.1

Smart Shrinking QuickCheck’s shrinking algorithm is deterministic and usually returns
shrunk counterexamples that have the same constructors as the original. SmartCheck’s
shrinking algorithm is non-deterministic and does not restrict shrunk values to have the
same constructors as the original. According to Pike’s results, SmartCheck’s shrinking
outperforms QuickCheck’s.

Counter-example generalization Even with a small counterexample, it may not be
simple to determine the cause of a fault. So after obtaining a counterexample, SmartCheck
generalizes it by exploring possibilities of sub-values. If we run SmartCheck on the property
prop_sortCount, we get:

> smartCheck scStdArgs {format=PrintString} (uncurry prop_sortCount)
*** Failed! Falsifiable (after 4 tests):
*** Smart-shrunk value:
(2,[2,2])

*** Extrapolated value:
forall values x0:
(,) 2 (: 2 (: 2 x0))

In other words, the property fails for a pair of arguments of the form 2 and 2:2:x0.
The prop_sortCount property is strict on its arguments, as the sorting function needs to
evaluate the whole list to return a value. The ability to generalize a counterexample even
in a strict property is an advantage over Lazy SmallCheck.

Limitations SmartCheck is not able to generalize functional counterexamples. Its gener-
alized counterexamples do not allow for repeated variables and side conditions – something
we explore in Chapter 6.

2.1.10 Hedgehog: integrated shrinking

Stanley [2017] describe Hedgehog as “a modern property-based testing system, in the spirit
of QuickCheck”. Similarly to QuviQ QuickCheck, it allows for integrated shrinking: users
get the shrink for free by just writing a generator; shrunk values obey data invariants by
construction. Differently from other property-based testing tools for Haskell, generators
are not inferred from types but instead defined alongside properties.

2.1.11 Beyond Haskell

This section notes some work on property-based testing beyond the Haskell programming
language.

17

2 Literature Review: property-based testing and its applications

Curry EasyCheck [Christiansen and Fischer, 2008] is a property-based testing tool for
Curry. It explores Curry’s features of non-determinism to implement searches for coun-
terexamples. It allows exhaustive testing and random testing through shuffling of coun-
terexamples search trees.

Erlang For Erlang, aside from the previously mentioned QuviQ QuickCheck [Arts et al.,
2006], theres PropEr [Papadakis and Sagonas, 2011].

MoreBugs: find more bugs with QuickCheck [Hughes et al., 2016] describes an extension
to QuickCheck to avoid rediscovering the same bugs. As each bug is found, they are
generalized as a bug pattern. Then, further test cases matching a bug pattern are never
generated again.

Clean Koopman et al. [2003] present GAST, a property-based testing tool for the Clean
programming language.

Isabelle/HOL When developing theories about programs using a theorem prover, in-
correct specifications are often found during failed proof attempts. Such failures can be
very time consuming. Motivated by this problem, Berghofer and Nipkow [2004] designed
a version of QuickCheck for Isabelle/HOL statements. Before starting lengthy proofs for
statements, Isabelle QuickCheck can be used to search for counterexamples. If the state-
ment is wrong, this may save the time that would be wasted in a failed proof attempt. The
tool is able to find counterexamples in both case studies. Isabelle QuickCheck is further ex-
tended by Bulwahn [2012, 2013] with support for exhaustive testing and a narrowing-based
testing approach designed to improve efficiency.

Racket New et al. [2017] describe fair enumeration combinators for Racket with ideas
similar to Feat (§2.1.4) [Duregård et al., 2012]. They define a notion of fairness that can
be used to identify which enumerations are better suited for property-based testing.

Scala Nilsson [2014] describe ScalaCheck, a property-based testing tool for Scala or Java
programs. It performs tests randomly, is able to shrink failing cases and supports testing
of stateful functions.

Clojure Rich Hickey and Reid Draper [2013–2017] present test.check, a randomized
property-based testing tool for Clojure. Similarly to QuviQ QuickCheck, it allows for
integrated shrinking: users get the shrink for free by just writing a generator; shrunk
values obey data invariants by construction.

Usability in imperative languages Although still useful, property-based testing is a
bit less useful in the realm of imperative programming languages as property-based testing
benefits from testing functions and modules that have no side-effects.

18

Property-based Testing Tools 2.1

.NET Framework: Parameterized Unit Tests Tillmann and Schulte [2005] describe
the idea of parameterized unit tests and a system to test programs on the .NET framework.
Their ideas are very similar to property-based testing: “Test methods are generalized by
allowing parameters.”; “[these methods] describe a set of traditional unit tests which can
be obtained by instantiating the methods with given argument sets”. However, instead of
generating test data randomly or enumerative, Tillmann and Schulte use symbolic execu-
tion of .NET assemblies to both execute tests and select input values and may sometimes
require the user to provide input values for testing.

Interestingly, Tillmann and Schulte [2005] did not seem to be aware of the work in
QuickCheck [Claessen and Hughes, 2000] at the time of publication of their paper: it is
neither cited nor compared.

Java: unit tests maximizing coverage Pacheco and Ernst [2007] and Fraser and Ar-
curi [2011] describe RANDOOP and EvoSuite, two test suite generation tools for the Java
programming language. Given a Java program, RANDOOP and EvoSuite will produce
unit tests that maximize line and branch coverage. These are not property-based testing
tools as test properties are not involved. Although test generation involves randomness, it
is directed by coverage.

Concolic testing Godefroid et al. [2005] and Sen et al. [2005] describe the DART and
CUTE techniques. Based on the results of a syntactic and symbolic analysis of a program,
these techniques generate test values while trying to maximize code coverage. This is dif-
ferent from property-based testing, where test values are generated only based on property
types thus not requiring access to source code or imposing a language subset on tested
programs.

2.1.12 Discussion and Comparison

Several tools for property-based testing were presented in this chapter. Again, Figure
2.1 shows the flow of ideas between property-based testing tools and Figure 2.2 shows
property-based testing tools placed along two axes: random–enumerative and strict–lazy.
A summary of several distinguishing features is shown in Table 2.2. The starting point for
this table was a table by Reich et al. [2013]. The table includes Irulan and Reach, tools
with a broader scope of applications: but here evaluated in the context of property-based
testing. We have included LeanCheck and Extrapolate, two of the tools developed in this
thesis discussed in Chapters 3 and 6.

Test Data Generation QuickCheck, SmartCheck and Hedgehog generate test values
randomly. SmallCheck, Lazy SmallCheck, LeanCheck, Extrapolate and Neat provide only
exhaustive testing. Feat, GenCheck and Irulan are more flexible and permit either enu-
merative or random testing. Tools with size-bounded enumeration offer greater control

19

2 Literature Review: property-based testing and its applications

Table 2.2: Summary of differences between property-based testing tools for Haskell.

Q
ui
ck
C
he
ck

Sm
ar
tC

he
ck

H
ed
ge
ho

g

Sm
al
lC
he
ck

La
zy

SC

L
ea
n
C
h
ec
k

E
xt
ra
p
ol
at
e

Fe
at

N
ea
t

G
en
C
he
ck

Ir
ul
an

R
ea
ch

Test data generation
random # # # # # –
enumerative # # # –
depth-bounded # # # # # # # # –
size-bounded # # # # # # –

mixed random & enumerative # # # # # # # # –
demand-driven / directed # # # # # # # #
generator instance auto-derivation # # –

Features
Existential properties # # # # # # # #
Higher order properties # # # # # # #
Generalized counterexamples # # # # # # # # #
Ease of use/writing generators # # # G# G# G# G# – –

Availability
Cabal package available on Hackage G# # #
Compilable with GHC 8.0 (2017) G# # # –
Compilable with GHC 7.8 (2014) # # # –

Licensing

B
SD

3

B
SD

3

B
SD

3

B
SD

3

B
SD

3

B
SD

3

B
SD

3

B
SD

3

B
SD

3

B
SD

3

G
P

L
v3

–
Legend: Yes/Good. # No/Poor. G# Partial/Median.

on the number of test cases. Lazy SmallCheck, Neat, Irulan and Reach are able to elimi-
nate test cases, either by testing partial values or lazy narrowing. Most of those tools can
automatically derive generator instances for types which do not have a constraining data
invariant.

Writing generator typeclass instances for enumerative property-based testing tools is
arguably easier. One of the reasons for this is the need for shrinking on random testing
tools.

Existential and higher-order properties Enumerative testing tools have the advan-
tage of allowing for existential properties. SmallCheck, Lazy SmallCheck, LeanCheck and
Extrapolate support existential properties out-of-the-box. A few tools support higher-order
properties, those that take functions as argument values.

20

Applications of Property-based testing 2.2

Generalized counterexamples Three tools provide support for generalized counterex-
amples by using different strategies: Lazy SmallCheck, SmartCheck and Extrapolate. Lazy
SmallCheck does that by providing partial counterexamples, that is, counterexamples in
which the property did not even evaluate part, or parts, of the arguments, even for func-
tional values. SmartCheck on other hand, is able to provide generalized counterexamples
by testing a function fixing some part of the arguments. This strategy is more general
but risks reporting fake counterexamples. No work has been done yet in doing that for
functional values.

Availability Most tools are freely available with open source licences, either BSD-style4

or GPLv35. Most tools have a package available on the Hackage6 package repository.
GenCheck, Irulan, Reach and the updated Lazy SmallCheck do not compile or work under
the latest GHC.

2.2 Applications of Property-based testing
Property-based testing can be applied beyond its original scope of simply testing pro-
grams. For example, it can be used as part of a process to automatically generate program
specifications. This section reviews works using property-based testing as a component.

2.2.1 QuickSpec: discovery of equational laws

QuickSpec [Claessen et al., 2010, Smallbone, 2011, 2013, Smallbone et al., 2017] is a tool
to automatically conjectures equational specifications for Haskell programs. These specifi-
cations can contribute to documentation, understanding and testing. Individual properties
can be used as test properties for QuickCheck and similar tools.

QuickSpec accepts a set of functions to describe and a set of background functions
allowed to appear in laws. QuickSpec produces a set of equations describing the given
functions.

Example application If we pass (a correct) sort to QuickSpec, with [], length,
ordered, elem and count in the background, it reports:

1. sort [] = []
2. length (sort xs) = length xs
3. ordered (sort xs) = True
4. sort (sort xs) = sort xs
5. count x (sort xs) = count x xs
6. elem x (sort xs) = elem x xs

4https://opensource.org/licenses/BSD-3-Clause
5https://www.gnu.org/licenses/gpl-3.0.html
6https://hackage.haskell.org/

21

https://opensource.org/licenses/BSD-3-Clause
https://www.gnu.org/licenses/gpl-3.0.html
https://hackage.haskell.org/

2 Literature Review: property-based testing and its applications

How QuickSpec works QuickSpec works by testing and lightweight reasoning. It builds
terms of increasing size from type correct applications of given functions. It tests these
terms for equality using the configured number of value assignments to discover apparent
equalities. These equalities are reported to the user and used to avoid redundant testing.
In Chapter 5, we will develop a similar tool and give details on a QuickSpec-like algorithm.

Limitations QuickSpec is not able to formulate inequality laws (>=, >, <, <=) directly.
The original version of QuickSpec [Claessen et al., 2010] did not support conditional equa-
tions. Although QuickSpec 2 [Smallbone et al., 2017] does support it, conditions are re-
stricted to a set of predicates. QuickSpec has support for observational equalities which can
be used to compare values without Eq instances, such as functions or regular expressions.

2.2.2 EasySpec: signature inference for property discovery

Kerckhove [2017] describes EasySpec, a tool to make QuickSpec easier to use by automat-
ing the process of deciding which background functions to use for QuickSpec. Given a
focus function we are interested in knowing properties about and a collection of modules,
EasyCheck automatically decides which background functions to use and passes those to
QuickSpec, reporting the results. It offers a simple command line interface, running

easyspec discover Sort.hs sort

is enough to discover properties of a sort function placed in a file called Sort.hs.
EasySpec works by running QuickSpec several times with smaller subsets of the universe

of available background functions selecting functions that are “better” according to some
heuristics.

2.2.3 Bach: discovering relational specifications

Bach [Smith et al., 2017] is a technique to discover likely relational specifications based
on test results. These relational specifications include commutativity, transitivity and
equivalence between functions. Smith et al. [2017] provide an implementation in OCaml,
for OCaml functions.

2.2.4 MuCheck: syntactic mutation testing for Haskell

MuCheck [Le et al., 2014, 2013, Le et al.] is a tool to check for comprehensiveness of
properties as test criteria by mutation testing. A series of syntactic mutations is introduced
in the program being tested using mutation operators provided by the user. Then, the
properties under evaluation are tested against all the mutations. Any surviving mutants
might indicate a missing property about the program under test.

A diagram showing this functionality is shown in Figure 2.3: sort4, a mutant variation
of sort, has survived all tests. This mutant is either equivalent to the original sort or
indicates a missing property.

22

Summary 2.3

sort

sort1

<

to

>

sort2

>=

to

<

sort3

 >=

 to

 <=

sort4

>=

to ...

>

sortN

swap

patterns

X X X

...

sort4 X

 quickCheckAll

 props sort*

Figure 2.3: MuCheck applied to a sorting function

2.2.5 Lightweight Mutation Testing in Haskell

Duregård [2016] describes “a tiny mutation testing framework” that works on top of
QuickCheck. Differently from MuCheck, mutations are black-box, not relying on source-
code changes. At runtime, for a random selection of argument values, result values are
randomly mutated. Because of this, Duregård’s framework has full language support and
does not rely on a subset of the Haskell language. Also, it avoids the problem of equivalent
mutants [Jia and Harman, 2011] by design.

Because this technique works by damaging result values, it will not be able to generate
mutants that MuCheck otherwise would. An experimental comparison could be done to
evaluate the practical differences between MuCheck and Duregård’s technique.

2.3 Summary
In this chapter, we presented a summary of recent work in the area of property-based
testing. §2.1 presented several tools for property-based testing. §2.2 presented a few tools
that apply property-based testing beyond its original scope of simply testing properties.

23

24

Chapter 3

LeanCheck: enumerative testing of
higher-order properties

This chapter presents the core of LeanCheck, a tool for property-based testing in Haskell.
LeanCheck generates test values of increasing size enumeratively. Using a partial enumer-
ation of functions, it is able to test higher-order properties. Although its enumeration
strategy has similarities to Feat (§2.1.4), the ranking and ordering of values are defined
differently to align better with our needs when enumerating functions (§3.5) and functional
mutants (Chapter 4).

Tools developed in further chapters, FitSpec (Chapter 4), Speculate (Chapter 5) and
Extrapolate (Chapter 6) all use LeanCheck to test properties.

This chapter is partly based on an unpublished draft paper [Braquehais et al., 2017].

3.1 Introduction
LeanCheck is an enumerative property-based testing tool for Haskell. It is size-bounded and
allows testing of higher-order properties. Although its enumeration strategy has similarities
to Feat [Duregård et al., 2012], the ranking and ordering of values are defined differently
to align better with our needs when enumerating functions (§3.5) and functional mutants
(Chapter 4).

Roadmap In this chapter we describe the implementation of LeanCheck:
• how data values are enumerated (§3.2);

• how properties are tested (§3.3);

• how to deal with conditional properties and data invariants (§3.4);

• how higher-order properties are tested and functions are enumerated (§3.5).
We show a couple of example applications with higher-order properties (§3.6). Then, we
draw some conclusions and suggest future work (§3.8).

25

3 LeanCheck: enumerative testing of higher-order properties

3.2 Listable Data Types and Fair Enumeration

Parallel to QuickCheck’s Arbitrary, SmallCheck’s Serial and Feat’s Enumerable type-
classes, we define Listable:

class Listable a where
tiers :: [[a]]

A Listable instance’s tiers value is a possibly infinite list of finite sublists of values
characterised by some notion of size. Each sublist represents a tier: the first tier contains
values of size 0, the second tier contains values of size 1, and so on. Size varies with the
type being enumerated: for tuples, it is the sum of component sizes; for algebraic data
types, the derivable default definition of size is the number of constructor applications of
positive arity. If we wish to list all values of a type, we can simply concatenate tiers:

list :: Listable a => [a]
list = concat tiers

Defining Listable instances Listable instances can be defined using a family of func-
tions cons<N> and an operator \/. Each function cons<N>, takes as argument a constructor
of arity N, each of whose argument types is Listable, and returns tiers containing all pos-
sible applications of the constructor. The operator \/ produces the sum of two lists of
tiers. So, the general form of an instance for algebraic datatypes is:

instance <Context> => Listable <Type> where
tiers = cons<N> ConsA

\/ cons<N> ConsB
...
\/ cons<N> ConsZ

The order between different constructors only affects the order of enumeration between
same-sized elements. The form of expression, using \/ to combine cons<N> applications,
will be familiar to SmallCheck users: tiers and series declarations are similar.

Delaying enumeration The function delay is defined by:

delay :: [[a]] -> [[a]]
delay = ([]:)

It prepends an empty list to increase the size assigned to elements in a tier enumeration
by one. So:

delay [[x,y],[a,b]] = [[],[x,y],[a,b]]

The function delay is useful when we take the product of tier-lists or define the cons<N>
family of operators.

26

Listable Data Types and Fair Enumeration 3.2

Sum of tier-lists The sum of two tier-lists is computed by the \/ operator:

(\/) :: [[a]] -> [[a]] -> [[a]]
xss \/ [] = xss
[] \/ yss = yss
(xs:xss) \/ (ys:yss) = (xs ++ ys) : xss \/ yss

So, for example:

[xs,ys,zs] \/ [is,js,ks,ls] = [xs++is, ys++js, zs++ks, ls]

For tier-lists with the same number of tiers, \/ is equivalent to zipWith (++).

Product of tier-lists The product of two tier-lists is computed by the >< operator:

(><) :: [[a]] -> [[b]] -> [[(a,b)]]
_ >< [] = []
[] >< _ = []
(xs:xss) >< yss = [xs ** ys | ys <- yss]

\/ delay (xss >< yss)
where
xs ** ys = [(x,y) | x <- xs, y <- ys]

So, for infinite tier-lists:

[is,js,ks,...] >< [xs,ys,zs,...] = [is**xs
, is**ys ++ js**xs
, is**zs ++ js**ys ++ ks**xs
, ...]

Note the use of delay. As we peel-off one tier in the pattern match to extract xss, we
need to re-add it in the second argument of \/.

Constructing tiers Now, we define the cons<N> family of functions that build tier-lists
from constructors.

Arity 0 The function cons0 simply forms in a tier-list with a single tier containing a value
of size 0:

cons0 :: a -> [[a]]
cons0 x = [[x]]

Arity 1 The function cons1 maps a given constructor into a tiered enumeration, delaying
it once.

cons1 :: Listable a => (a -> b) -> [[b]]
cons1 f = delay (mapT f tiers)

27

3 LeanCheck: enumerative testing of higher-order properties

Table 3.1: Numbers of data values in successive tiers for several example data types.
Tier Number of data values of type:

Bool Nat (Nat,Nat) [Nat] [[Nat]]

0 2 1 1 1 1
1 – 1 2 1 1
2 – 1 3 2 2
3 – 1 4 4 5
4 – 1 5 8 13
5 – 1 6 16 34
6 – 1 7 32 89
7 – 1 8 64 233
8 – 1 9 128 610

The function mapT, a variant of map for tier-lists, is defined as follows.

mapT :: (a -> b) -> [[a]] -> [[b]]
mapT = map . map

We use delay so that the application of the constructor argument “counts” on the size of
the returned values. Additionally, without the application of delay, cons1 would return
an infinite starting tier when applied to a recursive type constructor like (:).

Further arities For cons2 and others, it is just a matter of uncurrying, mapping and
delaying:

cons2 :: (Listable a, Listable b) => (a -> b -> c) -> [[c]]
cons2 f = delay (mapT (uncurry f) tiers)

cons3 :: (Listable a, Listable b, Listable c)
=> (a -> b -> c -> d) -> [[d]]

cons3 f = delay (mapT (uncurry3 f) tiers)
where
uncurry3 f (x,y,z) = f x y z

As cons<2>, . . . , cons<N> are defined by applying uncurried versions of constructors they
need matching Listable tuple instances, defined in the next section.

Listable Bools The Listable instance for Bools is defined as follows:

instance Listable Bool where
tiers = cons0 False

\/ cons0 True

There are two Bool values, both of size 0:

tiers :: [[Bool]] = [[False,True]]

28

Listable Data Types and Fair Enumeration 3.2

Listable Nats For the following natural-number type, defined as a wrapper over Ints,
newtype Nat = Nat Int

assuming a Num instance, a Listable instance can be defined by
instance Listable Nat where
tiers = cons0 0

\/ cons1 (+1)

so
tiers :: [[Nat]] = [[0], [1], [2], [3], ...]

as the size of each number is just the number itself — or equivalently, the number of
applications of (+1) used to compute it.

Listable tuples We define tiers of pairs using a product of tiers of element values:
instance (Listable a, Listable b) => Listable (a,b) where
tiers = tiers >< tiers

tiers of triples are defined by:
instance (Listable a, Listable b, Listable c) => Listable (a,b,c) where
tiers = mapT (\(x,(y,z)) -> (x,y,z)) tiers

Instances for tuples of further arity are defined similarly.
The size of tuples is given by the sum of sizes of its component values. For pairs of

Nats, for example, we have:
tiers :: [[(Nat,Nat)]] = [[(0,0)]

, [(0,1),(1,0)]
, [(0,2),(1,1),(2,0)]
, [(0,3),(1,2),(2,1),(3,0)]
, ...
]

Listable Lists The Listable instance for lists is defined as follows:
instance Listable a => Listable [a] where
tiers = cons0 []

\/ cons2 (:)

So, for example,
tiers :: [[[Nat]]] = [[[]]

, [[0]]
, [[0,0] ,[1]]
, [[0,0,0], [0,1], [1,0], [2]]
, ...]

is the tier-list for lists of natural numbers. The size of lists is given by the sum of sizes of
elements added to the length of the list (number of constructor applications).

29

3 LeanCheck: enumerative testing of higher-order properties

Table 3.2: Numbers of values in each tier for two alternative Listable Int instances.
When using the absolute value as size (1), the enumeration of compound types containing
Ints “blows-up” faster than with one-integer-per-tier (2).

(Enum.) – Type Numbers of values for tier of size
0 1 2 3 4 5 6 7 8

(1) – Int 1 2 2 2 2 2 2 2 2
(2) – Int 1 1 1 1 1 1 1 1 1

(1) – (Int,Int) 1 4 8 12 16 20 24 28 32
(2) – (Int,Int) 1 2 3 4 5 6 7 8 9

(1) – [Int] 1 1 3 7 17 41 99 239 577
(2) – [Int] 1 1 2 4 8 16 32 64 128

(1) – [[Int]] 1 1 2 6 18 54 162 486 1458
(2) – [[Int]] 1 1 2 5 13 34 89 233 610

Example 3.1 For the following tree type

data Tree a = E | N a (Tree a) (Tree a)

we may define a Listable instance by

instance Listable a => Listable (Tree a) where
tiers = cons0 E \/ cons3 N

so:

tiers :: [[Tree Nat]] =
[[E]
, [N 0 E E]
, [N 0 E (N 0 E E), N 0 (N 0 E E) E, N 1 E E]
, ...
] �

Table 3.1 shows the number of values in each tier for several types. The ratios between
these quantities for successive sizes is far smaller, for example, than the ratios between
quantities of values for successive depths in SmallCheck — where an increase in depth may
increase the size of a test-data set by orders of magnitude [Duregård et al., 2012].

Listable integers Here is one way we could define Listable Int:

instance Listable Int where
tiers = [[0]] ++ [[n,-n] | n <- [1..]]

In this definition, the size of an integer is its absolute value. However, from a practical
point of view, as we use Ints inside other structures, this definition of integer tiers makes
the enumeration “blow-up” too quickly (Table 3.2). Having one Int per tier works better

30

Listable Data Types and Fair Enumeration 3.2

in practice, even though the notion of size becomes less intuitive here: 0 has size 0, 1 has
size 1, -1 has size 2, 2 has size 3, and so on, alternating between positives and negatives.

instance Listable Int where
tiers = map (:[]) $ [0,-1..] ‘interleave‘ [1..]
where
interleave :: [a] -> [a] -> [a]
[] ‘interleave‘ ys = ys
(x:xs) ‘interleave‘ ys = x:(ys ‘interleave‘ xs)

> tiers :: [[Int]]
[[0],[1],[-1],[2],[-2],[3],...]

Convenience The value tiers can exist alongside list as methods, each has a default
definition in terms of the other:

class Listable a where
tiers :: [[a]]
list :: [a]
tiers = map (:[]) list
list = concat tiers

So the user can define any Listable instance in the manner most convenient for their
use-case. For types where a notion of tiers is not useful, defining only list reduces all
tiers to singletons. For example, we can redefine a Listable instance for Int as follows:

instance Listable Int where
list = [0,-1..] ‘interleave‘ [1..]
where
interleave :: [a] -> [a] -> [a]
[] ‘interleave‘ ys = ys
(x:xs) ‘interleave‘ ys = x:(ys ‘interleave‘ xs)

Automatic derivation of Listable instances Except when values have to follow a data
invariant (§3.4), Listable instances follow a very simple pattern. Their production can
be automated using Template Haskell [Sheard and Jones, 2002]. Using these techniques,
we could derive an instance of the Listable typeclass for algebraic datatypes, with the
following top-level declaration:

deriveListable ’’Type

Because the definition of deriveListable is straightforward, albeit lengthy, we omit it
here. It is provided as part of the LeanCheck package (§3.8).

31

3 LeanCheck: enumerative testing of higher-order properties

3.3 Testable Properties and Tiers of Tests
Testable types We now define a Testable typeclass with one function, resultiers.
Given a Testable property, it returns tiers of results.

class Testable a where
resultiers :: a -> [[Result]]

The simpler results list can be obtained by concatenating resultiers:

results :: Testable a => a -> [Result]
results = concat . resultiers

The result type represents a test result by a pair: the first component is list of arguments
and the second component is a boolean test result for those arguments:

type Result = ([String],Bool)

Testable booleans We can now define our first Testable instance — the type-level base
case Bool. A boolean value is a property with no arguments, where the only test result is
its value.

instance Testable Bool where
resultiers p = [[([],p)]]

This Bool instance can be thought of as the base case for a type-level recursion.

Testable functions The recursive, and final, case is our instance for functions:

instance (Show a, Listable a, Testable b) => Testable (a -> b) where
resultiers p = concatMapT resultiersFor tiers
where
resultiersFor x = (\(as,x) -> (show x:as,r)) ‘mapT‘ resultiers (p x)

For testable properties of type a -> b, the argument type a must have Show and Listable
instances so that we can respectively represent the arguments as strings and generate test
argument values. The result type b must be Testable: the partial application p x gives a
specialised version of property p with x fixed as the test value for the first argument. As
(->) associates to the right, a -> (c -> Bool) is the same as a -> c -> Bool, and
we can instantiate b at a function type as long as the final result type is Bool.

The concatMapT function used to define resultiers is the tiered equivalent of concatMap:

concatT :: [[[[a]]]] -> [[a]]
concatT = foldr (\+:/) [] . map (foldr (\/) [])
where
xss \+:/ yss = xss \/ delay yss

concatMapT :: (a -> [[b]]) -> [[a]] -> [[b]]
concatMapT f = concatT . mapT f

32

Conditional Properties and Data Invariants 3.4

Finding counterexamples of Testable values The counterExamples function lists
any counterexamples of a property found by applying it to a limited number of test values:

counterExamples :: Testable a => Int -> a -> [[String]]
counterExamples m p = [as | (as,False) <- take m (results p)]

Using counterExamples, the checkFor function reports whether a property is true for a
given number of test values. In case it is not, it reports a counterexample.

checkFor :: Testable a => Int -> a -> IO ()
checkFor n p =
case counterExamples n p of
[] -> putStrLn $ "+++ OK!"
(ce:_) -> putStrLn $ "*** failed for: " ++ unwords ce

For convenience, the function check fixes the number of test values to a default (200).

check :: Testable a => a -> IO ()
check = checkFor 200

Testing properties With what has been defined so far, we can test the properties defined
in Chapter 1:

> check (prop_sortOrdered :: [Int] -> Bool)
+++ OK
> check (prop_sortCount :: Int -> [Int] -> Bool)
*** Failure: 0 [0,0] �

3.4 Conditional Properties and Data Invariants
Often we do not expect a property to hold in all cases, but only those which meet some
precondition. For example, for non-negative values of x:

\x -> x == abs x

We can express such constraints either by embedding a precondition into a property
itself or by applying an invariant condition in a generator.

Conditional properties We can define the logical implication operator as a normal
Haskell function and use it to reformulate the abs property:

infixr 0 ==>
(==>) :: Bool -> Bool -> Bool
False ==> _ = True
True ==> p = p

\x -> x >= 0 ==> x == abs x

33

3 LeanCheck: enumerative testing of higher-order properties

This approach has the advantage of not needing any changes in the property testing tool,
but has the significant downside that there is no reduction in the number of cases checked.
As our Listable instance for Int alternates positive and negative values, only half of
those values make it past the precondition. The property-testing tool does not care how
the property passes or fails, only what the result is. A test case for which a property is
true because the precondition failed is counted in the same way as a test case for which
the actual condition of interest holds.

Data invariants Often we do not want to check a property for every possible value, but
just pushing the precondition into the property leaves much to be desired. We can address
this problem by instead restricting the generated values: the same number of test cases
will be tried, but now they will all meet the precondition.

We can redefine the standard function filter to work over tiers:

filterT :: (a -> Bool) -> [[a]] -> [[a]]
filterT = map . filter

For convenience we define a flipped version:

suchThat :: [[a]] -> (a -> Bool) -> [[a]]
suchThat = flip filterT

that can be used when defining Listable instances of types that follow a data invariant.
For example:

newtype NonNeg n = NonNeg n

instance (Listable n, Num n, Ord n) => Listable (NonNeg n) where
tiers = cons1 NonNeg ‘suchThat‘ nonNegOk
where
nonNegOk (NonNeg n) = n >= 0

So,

> tiers :: [[NonNeg Int]]
[[], [NonNeg 0], [NonNeg 1], [], [NonNeg 2], ...]

The function suchThat generalizes nicely over types with several constructors, allowing
different invariants for each (or none):

tiers = cons<N> <Cons1> ‘suchThat‘ <someCondition>
\/ cons<N> <Cons2>
\/ cons<N> <Cons3> ‘suchThat‘ <someCondition>
\/ cons<N> <Cons4>

We can use the NonNeg type in the definition of the abs property to ensure that only
non-negative values are checked:

\(NonNeg x) -> x == abs x

34

Higher Order Properties and Listable Functions 3.5

Sets and Bags An auxiliary function setsOf :: [[a]] -> [[[a]]] takes as ar-
gument tiers of element values; it returns tiers of size-ordered lists of elements without
repetition. For example:

setsOf (tiers :: [[Bool]]) =
[[[]]
, [[False], [True]]
, [[False,True]]]

setsOf (tiers :: [[Nat]]) =
[[[]]
, [[0]]
, [[1]]
, [[0,1],[2]]
, [[0,2],[3]]
, ...]

Another similar auxiliary function bagsOf :: [[a]] -> [[[a]]] also takes as
argument tiers of element values; but returns tiers of size-ordered lists of elements possibly
with repetition.

The sizes of lists returned by setsOf and bagsOf is the same as lists returned by
an unrestricted list enumeration: size is given by the sum of sizes of elements added to the
length of the list (number of constructor applications).

Another similar auxiliary function properSubsetsOf :: [[a]] -> [[[a]]] also
takes as argument tiers of element values; but returns tiers of proper sublists of values from
a given tier-list.

The setsOf, bagsOf and properSubsetsOf functions will be useful when defining tiers
of functions (cf. §3.5), tiers of mutants (cf. §4.4.1) and tiers of values satisfying a data
invariant (cf. §4.5.3, §4.5.4, §4.5.6).

3.5 Higher Order Properties and Listable Functions

Functional programs often use higher-order functions like map and filter. As they take
functional arguments, often properties about them also require functional arguments. In
this section we define a partial enumeration of functions that allows testing properties with
functions as arguments. This enumeration requires all arguments of enumerated functions
to belong to the Eq class. So it is not able to enumerate higher-order functions.

Example 3.2 The following is an (incorrect) property from [Claessen, 2012] stating that
map and filter commute:

prop_mapFilter :: Eq a => (a -> a) -> (a -> Bool) -> [a] -> Bool
prop_mapFilter f p xs = map f (filter p xs) == filter p (map f xs) �

35

3 LeanCheck: enumerative testing of higher-order properties

To test it, we need to define a Listable instance for functions (a -> b). However, a
complete enumeration of functions over recursive types is known to be impossible [Kahrs,
2006]. Even for primitive recursive functions, an enumeration without repetition is not
feasible in practice [Kahrs, 2006].

Mutating functions We can enumerate a useful though limited class of functions by
starting with constant-valued functions, then adding exceptions. Each single-case mutation
of a function is defined by an exception pair. The mutate function mutates a function given
a list of exception pairs:

mutate :: Eq a => (a -> b) -> [(a,b)] -> (a -> b)
mutate f ms = foldr mut f ms
where
mut (x’,fx’) f x | x == x’ = fx’

| otherwise = f x

We shall use mutate again in the development of FitSpec in Chapter 4. There mutation is
applied to given functions under test, not to constant-valued ones.

Enumerating exceptions The exceptionPairs function takes tiers of argument and
result values, and gives tiers of lists of ordered pairs of argument and result values.

exceptionPairs :: [[a]] -> [[b]] -> [[[(a,b)]]]

For example:

> exceptionPairs (tiers :: [[Nat]]) (tiers :: [[Nat]])
[[[]]
, [[(0,0)]]
, [[(0,1)],[(1,0)]]
, [[(0,2)],[(1,1)],[(0,0),(1,0)],[(2,0)]]
, ...
]

Here is how we define exceptionPairs:

exceptionPairs xss yss = concatMapT (‘excep‘ yss) (properSubsetsOf xss)
where
excep :: [a] -> [[b]] -> [[[(a,b)]]]
excep xs sbs = zip xs ‘mapT‘ products (const sbs ‘map‘ xs)

As the function properSubsetsOf returns tiers of proper sublists of values from a given
tier-list, we avoid most but not all repetition.

Enumerating functions Now, using mutate and exceptionPairs, we are ready to
enumerate tiers of functions. The combining operator -->> takes tiers of argument values
and tiers of result values and gives tiers of functions.

36

Higher Order Properties and Listable Functions 3.5

(-->>) :: Eq a => [[a]] -> [[b]] -> [[a -> b]]
xss -->> yss = (\(r,yss) -> mapT (const r ‘mutate‘)

(exceptionPairs xss yss))
‘concatMapT‘ (choices yss)

The function choices :: [[a]] -> [[(a,[[a]])]] returns tiers of choices for result
values. Each choice is a pair of an element taken from the argument tiers and a copy of
the argument tiers without that element. Its definition is omitted here.

So, our Listable (a -> b) instance is just:

instance (Eq a, Listable a, Listable b) => Listable (a -> b) where
tiers = tiers -->> tiers

As with the Testable (a -> b) instance in §3.3, the above definition suffices for function
types of any arity: Listable (a->b->c), Listable (a->b->c->d) and so on. Ar-
guments must be instances of both Eq and Listable. Results must also be instances of
Listable.

Example 3.3 These are the enumerated functions of type Bool -> Bool:

tiers :: [Bool -> Bool] =
[[const False
, const True]

, [const False ‘mutate‘ [(False,True)]
, const False ‘mutate‘ [(True,True)]
, const True ‘mutate‘ [(False,False)]
, const True ‘mutate‘ [(True,False)]]]

This enumeration includes two repeated functions:

const True ‘mutate‘ [(False,False)]
const True ‘mutate‘ [(True,False)]

which are equivalent to, respectively:

const False ‘mutate‘ [(True,True)]
const False ‘mutate‘ [(False,True)]

The repetition is more apparent if we show each function extensionally:

tiers :: [Bool -> Bool] =
[[\x -> case x of False -> False; True -> False
, \x -> case x of False -> True; True -> True]

, [\x -> case x of False -> True; True -> False
, \x -> case x of False -> False; True -> True
, \x -> case x of False -> False; True -> True
, \x -> case x of False -> True; True -> False]

]

37

3 LeanCheck: enumerative testing of higher-order properties

We can define a Show instance for functional types that shows functions in a similar exten-
sional form by enumerating arguments and recording results similarly to Runciman et al.
[2008]. We omit details here as this is not central for understanding how LeanCheck works
and somewhat off-topic on this thesis. �

Example 3.2 (revisited) We can now use LeanCheck to get a counterexample to
prop_mapFilter for boolean element values:

> check (prop_mapFilter :: (Bool->Bool) -> (Bool->Bool) -> [Bool] -> Bool)
*** failed for:
\x -> case x of False -> False; True -> False
\x -> case x of False -> True; True -> False
[True] �

Example 3.4 If we enumerate functions of type Nat->Nat->Nat, we see the application
of mutate at different functional levels:

[[const (const 0)]
, [const (const 1)]
, [const (const 0) ‘mutate‘ [(0,const 1)]
, const (const 1) ‘mutate‘ [(1,const 0)]
, const (const 0 ‘mutate‘ [(0,1)])
, const (const 1 ‘mutate‘ [(0,0)])
, const (const 2)
]

, ...
] �

The class of enumerated functions is limited to mutations of a constant function. Take
for example a simple function like even :: Int -> Bool. LeanCheck is not able to
enumerate it, only approximations, such as:

const False ‘mutate‘ [(0,True), (2,True), (4,True)]

Within tested properties, enumerated functions are evaluated for a finite number of argu-
ments. So in principle, LeanCheck will be able to find functional counterexamples to any
properties. However in practice, this is not true as some functional counterexamples will
appear only very late in the enumeration.

Table 3.3 shows the numbers of functions in successive tiers for several types. The
number grows by a factor of less than three.

Avoiding repetitions Repetitions mentioned on Example 3.3, can actually be avoided
by using the following implementation for -->>:

38

Higher Order Properties and Listable Functions 3.5

Table 3.3: Numbers of functions in successive tiers for several types
Tier Number of mutants of type

::Int ::Bool ::Int ::Int ::[Int]
->Bool ->Bool ->Int ->Int ->[Int]

->Bool ->Int
0 2 2 1 1 1
1 2 8 1 1 1
2 2 32 3 5 4
3 4 24 5 13 10
4 4 – 10 35 29
5 6 – 16 81 75
6 8 – 30 201 206
7 10 – 48 460 539
8 12 – 80 1063 1428
9 16 – 129 2374 3721

(-->>) :: Eq a => [[a]] -> [[b]] -> [[a -> b]]
xss -->> yss
| finite xss = mapT ((undefined ‘mutate‘) . zip (concat xss))

(products $ replicate (length $ concat xss) yss)
| otherwise = concatMapT (\(r,yss) -> mapT (const r ‘mutate‘)

(exceptionPairs xss yss))
(choices yss)

Whenever the argument type has a finite number of values, we enumerate functions by
taking the product of results (sort of like enumerating tuples of results). Otherwise, we use
the old enumeration. This avoids repetitions so long as the underlying tiers enumerations
do not have repetitions. The finite function is an approximation, returning True when
the tier list contain less than 13 values. We could have chosen to move the definition of
finite to Listable instances putting the burden of deciding finiteness on the user. But
we find the current solution to be easier to use.

The chosen solution suffices for practical uses. Consider the following Nat8 type and
its Listable instance:

newtype Nat8 = Nat8 Int

instance Listable Nat8 where
list = map Nat8 [0..7]

Using the first definition of -->>, repetitions only appear after enumerating 10000 values
(see Table 3.4). Not using the tuples-of-results enumeration for types with 13 values or more
will make no difference from the point of view of having repeated values when enumerating
up to 10000 values — an arguably resonable number for property test arguments.

39

3 LeanCheck: enumerative testing of higher-order properties

Table 3.4: Ratios of repetitions in different function enumerations when not enumerating
functions as tuples of results. With a fixed number of tests, as the domain increases, the
ratio of repetitions decreases.

max. # enumerated values
Type 10 100 1000 10000 100000

Nat1 -> Nat1 0% 0% 0% 0% 0%
Nat2 -> Nat2 33% 33% 33% 33% 33%
Nat3 -> Nat3 0% 53% 53% 53% 53%
Nat4 -> Nat4 0% 5% 63% 63% 63%
Nat5 -> Nat5 0% 0% 8% 69% 70%
Nat6 -> Nat6 0% 0% <1% 7% 55%
Nat7 -> Nat7 0% 0% 0% <1% 6%
Nat8 -> Nat8 0% 0% 0% 0% <1%

Example 3.3 (revisited) Now, these are the enumerated functions of type Bool ->
Bool:

tiers :: [Bool -> Bool] =
[[undefined ‘mutate‘ [(False,False),(True,False)]
, undefined ‘mutate‘ [(False,False),(True,True)]
, undefined ‘mutate‘ [(False,True),(True,False)]
, undefined ‘mutate‘ [(False,True),(True,True)]
]

]

3.6 Example Applications and Results
Equivalence of folds Consider the following incorrect property stating that type-restricted
versions of foldr and foldl are equivalent:

prop_foldlFoldr :: Eq a => (a -> a -> a) -> a -> [a] -> Bool
prop_foldlFoldr f z xs = foldr f z xs == foldl f z xs

With the property restricted to the Bool element type, LeanCheck reports:

*** Failed! Falsifiable (after 42 tests):
\x y -> case (x,y) of

(False,False) -> False
(False,True) -> False
(True,False) -> True
(True,True) -> False

False
[True]

40

Example Applications and Results 3.6

With the property restricted to the Int element type, LeanCheck reports:

*** Failed! Falsifiable (after 75 tests):
\x y -> case (x,y) of

(0,0) -> 1
(0,1) -> 1
(1,0) -> 0
(0,-1) -> 1
(1,1) -> 0
(-1,0) -> 0
(0,2) -> 1
(1,-1) -> 0
...

0
[0,0]

The function shown in the counterexample was defined with

const (const 0) ‘mutate‘ [(0,const 1)]

that is, whenever the first argument is 0, the result is 1. �

Segment Decomposition The following property encodes Bird’s (1986) segment de-
composition theorem, here restricted to concatenations:

prop_segmentDecomposition :: Eq a
=> ([a] -> Bool) -> ([a] -> [a]) -> [a] -> Bool

prop_segmentDecomposition p f xs = s xs == concat (map t (tails xs))
where
s xs = concat (map f (filter p (segs xs)))
t xs = concat (map f (filter p (inits xs)))
segs :: [a] -> [[a]]
segs = concat . map tails . inits

LeanCheck reports that this property is correct:

> checkFor 100000 (prop_segmentDecomposition :: ([Int]->Bool) -> ...)
+++ OK, passed 100000 tests.

And indeed it is.
If we damage the property by swapping tails and inits (an easy slip to make?)

prop_segmentDecomposition p f xs = s xs == concat (map t (inits xs))
where
s xs = concat (map f (filter p (segs xs)))
t xs = concat (map f (filter p (inits xs)))
segs :: [a] -> [[a]]
segs = concat . map tails . tails

41

3 LeanCheck: enumerative testing of higher-order properties

LeanCheck instead reports:

> checkFor 100000 (prop_segmentDecomposition :: ([Int]->Bool) -> ...)
*** Failed! Falsifiable (after 522 tests):
\x -> case x of

[] -> True
[0] -> True
[0,0] -> True
[1] -> True
[0,0,0] -> True
[0,1] -> True
[1,0] -> True
[-1] -> True
...

\x -> case x of
[] -> [1]
[0] -> [0]
[0,0] -> [0]
[1] -> [0]
[0,0,0] -> [0]
[0,1] -> [0]
[1,0] -> [0]
[-1] -> [0]
...

[0]

The property fails for the arguments:
• const True,

• const [0] ‘mutate‘ [([],[1])] and

• [0]. �

3.7 Comparison with Related Work

SmallCheck Differently from LeanCheck, SmallCheck enumerates values by depth in-
stead of size. Because of this, the number of test values is harder to control (cf. Table
3.5). SmallCheck also does not perform any kind of diagonalization so values reappear on
successive depths and tests are repeated.

Feat Like LeanCheck, Feat [Duregård et al., 2012] enumerates test values by size. For
some types, the definition of size differs yielding a different number of values for a given
size (cf. Table 3.5).

42

Conclusion 3.8

Table 3.5: Numbers of integer lists of successive sizes (for Feat and LeanCheck) or depths
(for SmallCheck).

SmallCheck’s depth 1, 2, 7, 36, 253, 2278, 25059, 325768, 4886521, 83070858, ...
Feat’s size 0, 1, 0, 0, 2, 2, 4, 12, 24, 52, 120, 264, 584, 1304, 2896, ...
LeanCheck’s tiers 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, ...

Feat does not support enumeration of functional test values. As the Feat authors note
“for completeness, Feat should support enumerating functional values. ... This is largely a
question of finding a suitable definition of size for functions, or an efficient bijection from
an algebraic type into the function type.” Perhaps something similar to the enumeration of
functions defined in §3.5 would also be suitable in Feat.

3.8 Conclusion

This chapter described the LeanCheck tool for enumerative property-based testing in
Haskell. It generates test values of increasing size enumeratively. This chapter details
the three necessary basic components of a property-based testing tool:
• a typeclass for test values with a generator (§3.2);

• a combinator library for defining generators (§3.2);

• a typeclass for testable properties (§3.3).
In addition, it covers conditional properties (§3.4) and enumeration of functions (§3.5).

Limitations LeanCheck is not intended for randomized testing: QuickCheck [Claessen
and Hughes, 2000] (§2.1.1) or Feat [Duregård et al., 2012] (§2.1.4) could be used for this
purpose. LeanCheck does not provide a sized enumeration combined with test-case pruning
using laziness, Neat [Duregård, 2016] could be used for this purpose.

Future work We note a few avenues for further investigation that could lead to improved
versions of LeanCheck or similar tools.

Improved pretty printing of functions The current version of LeanCheck pretty-prints
functions extensionally by printing enumerated arguments paired with function results.
Future versions of LeanCheck could have the option to print functions reflecting how they
were generated using applications of ‘mutate‘.

Functions satisfying conditions Methods to generate functions satisfying conditions could
be explored. For example, we may want to test properties that expect their functional
arguments to be monotonic, injective, commutative or even associative.

43

3 LeanCheck: enumerative testing of higher-order properties

Availability
LeanCheck is freely available with a BSD3-style license from either:
• https://hackage.haskell.org/package/leancheck

• https://github.com/rudymatela/leancheck
The full LeanCheck package includes various facilities not discussed here. This chapter
describes LeanCheck as of version 0.7.0

44

https://hackage.haskell.org/package/leancheck
https://github.com/rudymatela/leancheck

Chapter 4

FitSpec: refining properties for
functional testing

This chapter presents FitSpec, a tool providing automated assistance in the task of refining
sets of test properties for Haskell functions. FitSpec tests mutant variations of functions
under test against a given property set, recording any surviving mutants that pass all
tests. The number of surviving mutants and any smallest survivor are presented to the
user. A surviving mutant indicates incompleteness of the property set, prompting the user
to amend a property or to add a new one, making the property set stronger. Based on
the same test results, FitSpec also provides conjectures in the form of equivalences and
implications between property subsets. These conjectures help the user to identify minimal
core subsets of properties and so to reduce the cost of future property-based testing.

This chapter is based on the paper about FitSpec [Braquehais and Runciman, 2016] pre-
sented at the Haskell Symposium 2017.

4.1 Introduction
As discussed in Chapter 2, property-based testing tools automatically test a set of proper-
ties describing a set of functions. Two interesting questions arise for any specific application
of property-based testing:

• Does the set of properties completely describe the set of functions? Is there no other
set of functions that passes the tests?

• Is this set of properties minimal? Is there a property that is redundant? When doing
regression tests, can a property be excluded to speed up the process?

This chapter presents FitSpec, a tool providing automated assistance in the task of
refining sets of test properties for Haskell functions. FitSpec does not require sources for
functions under test: it only requires a tuple of those functions as component values. Sets
of test properties are wrapped to become the result of a function, whose argument is such
a tuple of functions (§4.3).

45

4 FitSpec: refining properties for functional testing

FitSpec enumerates small finite black-box mutations of functions under test (§4.4.1).
It tests those mutants against the property set, recording the ones that survive by passing
all the tests (§4.4.2). It presents the number of surviving mutants along with any smallest
surviving mutant (§4.4.3). A surviving mutant indicates incompleteness of the property
set, prompting the user to amend a property or to add a new one. When there is apparent
redundancy in a property set, FitSpec provides conjectures in the form of equivalences
and implications between properties, helping the user to identify minimal core subsets of
properties (§4.4.4).

Example 4.1 Consider the following property set describing a sort function:

1. \xs -> ordered (sort xs)
2. \xs -> length (sort xs) == length xs
3. \x xs -> elem x (sort xs) == elem x xs
4. \x xs -> notElem x (sort xs) == notElem x xs
5. \x xs -> minimum (x:xs) == head (sort (x:xs))

The first property states that the result of sorting is an ordered list. The last property
states that, after sorting, the minimum element of a non-empty list is its head. Other
properties state that sorting does not change the quantities or values of list elements. If we
supply this property set as input, FitSpec reports that it is neither minimal nor complete:

Apparent incomplete and non-minimal specification
20000 tests, 4000 mutants

3 survivors (99% killed), smallest:
sort’ [0,0,1] = [0,1,1]
sort’ xs = sort xs

minimal property subsets: {1,2,3} {1,2,4}
conjectures: {3} = {4} 96% killed (weak)

{1,3} ==> {5} 98% killed (weak)

Completeness: FitSpec discovers three mutants that survive testing against all proper-
ties. The smallest surviving mutant is clearly not a valid implementation of sort, but
indeed satisfies all properties. As a specification, the property set is incomplete as it
omits to require that sorting preserves the number of occurrences of each element value:
\x xs -> count x (sort xs) == count x xs

Minimality: FitSpec discovers two possible minimal subsets of properties: {1,2,3} and
{1,2,4}. As measured by the number of killed mutants, each of these subsets is as strong as
{1,2,3,4,5}. So far as testing has revealed, Properties 3 and 4 are equivalent and Property
5 follows from 1 and 3. It is up to the user to check whether these conjectures are true.
Indeed they are, so in future testing we could safely omit Properties 4 and 5.

46

Definitions 4.2

Refinement: If we omit redundant properties, and add a property to kill the surviving
mutant, our refined property set is:

1. \xs -> ordered (sort xs)
2. \xs -> length (sort xs) == length xs
3. \x xs -> elem x (sort xs) == elem x xs
4. \x xs -> count x (sort xs) == count x xs

FitSpec reports that this property set is apparently complete but not minimal: both 2 and
3 now follow from 4. Since that is true, we might remove Properties 2 and 3 to arrive at a
minimal and complete property set. �

Contributions The main contributions of this chapter are:

1. an enumerative black-box mutation-testing technique that does not need function
sources or mutation operators, and always returns a smallest or simplest surviving
mutant if there is one;

2. a technique to conjecture equivalences and implications between subsets of properties
based on mutation testing;

3. a tool (FitSpec) that implements these techniques providing key information for
Haskell programmers refining sets of test properties;

4. several small case studies illustrating and evaluating the applicability of FitSpec.

Road-map The rest of this chapter is organized as follows.
• §4.2 defines minimality, completeness, equivalence and implication of property sets;

• §4.3 describes how to use FitSpec;

• §4.4 describes how FitSpec works internally;

• §4.5 presents example applications and results;

• §4.6 discusses related work;

• §4.7 draws conclusions and suggests future work.

4.2 Definitions

We need suitable definitions of completeness, equivalence, implication and minimality of
property sets. These are given here, each followed by simple examples.

Definition (complete specification) A set of properties specifying a set of typed and
distinctly named functions is complete if no other binding of functional values to these
names, with the same types, satisfies all properties.

47

4 FitSpec: refining properties for functional testing

Example 4.2 The following property set describing the standard Prelude function
not :: Bool -> Bool is incomplete:

1. \p -> not (not p) == p

For example, the identity function id :: Bool -> Bool is distinct from not and satisfies
the above property.

The following property set, again describing not, is complete:

1. \p -> not (not p) == p
2. not True == False

There is no other Bool -> Bool function distinct from the standard not function that
satisfies the above specification. �

We emphasise that we are viewing functions as black-box correspondences between
inputs and outputs. For example, though the alternative declarations

not True = False not p = if p then False
not False = True else True

differ, they define the same function.

Definition (equivalence of property sets) Two sets of properties for similarly named
and typed functions are equivalent if the sets of functional-value bindings satisfying them
are the same.

Example 4.3 The property set

2. not True == False

for the not function is not equivalent to the property set

3. not False == True

as, for example, the function const False :: Bool -> Bool satisfies Property 2 but
not Property 3.

The property set

1. \p -> not (not p) == p
2. not True == False

is equivalent to the property set

1. \p -> not (not p) == p
3. not False == True

as both are satisfied only when the functional-value binding for not is the standard one.
�

48

How FitSpec is Used 4.3

Definition (implication between property sets) A set of properties implies another
set, if whenever a functional-value binding satisfies the first set, it also satisfies the second.
In other words, the set of functional-value bindings satisfying the first is a subset of the
bindings satisfying the second.

Example 4.4 The following property set for the not function

1. \p -> not (not p) == p
2. not True == False

implies the property set

3. not False == True

as all bindings of a functional value to not that satisfy both Properties 1 and 2 also satisfy
Property 3. The converse implication does not hold: the binding not = const True is
a counterexample. �

Definition (minimal property sets) A set of properties for a set of typed and dis-
tinctly named functions is minimal if none of its proper subsets is equivalent to it.

Example 4.5 The following property set for not is not minimal

1. \p -> not (not p) == p
2. not True == False
3. not False == True

as by inspection Properties 1 and 2 completely specify the standard not function. This
pair of properties is minimal, as neither Property 1 nor Property 2 alone is a complete
specification. �

4.3 How FitSpec is Used

FitSpec is used as a library (by “import Test.FitSpec”). Unless they already exist,
instances of the Listable and Mutable typeclasses are declared for types of arguments and
results of the functions under test (Step 1). Properties are gathered in an appropriately
formulated list (Step 2), and passed to the report function (Step 3). Property sets are
then iteratively refined, based on report results (Step 4). The following paragraphs detail
this process.

Step 1. Provide typeclass instances for user-defined types The types of argu-
ments and results for functions under test must all be members of the Listable (§3.2)
and Mutable (§4.4.1) type-classes. Where necessary, we declare type-class instances for
user-defined types.

49

4 FitSpec: refining properties for functional testing

FitSpec provides instances for most standard Haskell types and a facility to derive
instances for user-defined algebraic data types using Template Haskell [Sheard and Jones,
2002]. For types without a constraining data invariant, writing

deriveMutable ’’<Type>

is enough to create the necessary instances. For types with a constraining data invari-
ant, the user needs to provide suitable Listable instances (§3.2) in addition to the
deriveMutable call. FitSpec only works for types that are Eq instances.

Step 2. Gather properties We must gather properties in a list, to form the body of
a property-map function with the functions under test as argument. Given a potentially
mutated version of a (tuple of) function(s), a property map returns a list of properties over
it. The typical form of a property-map declaration is:

properties :: (<ty0>,<ty1>,...,<tyN>) -> [Property]
properties (<fun0>,<fun1>,...,<funN>) =
[property $ \<args1> -> <property1>
, property $ \<args2> -> <property2>
,
, property $ \<argsN> -> <propertyN>
]

The property function encodes a Testable property in a format suitable for FitSpec, of
the type Property:

property :: Testable a => a -> Property

Essentially, Testable values are functions with Listable argument types and a Bool
result. The internal representations of these types and classes are described in §4.4.

Step 3. Call the report function Results are presented by the report function. It
takes as arguments a tuple of functions under test and a property map, each of monomor-
phic type. It prints on standard output a report about any surviving mutants and con-
jectured equivalences or implications. A report application can be used as the body of a
main function to form a compilable program

main = report (fun0,fun1,...,funN) properties

or alternatively report applications can be expressed and evaluated using a REPL inter-
preter.

By default, FitSpec will try to analyse a given property-set for 5 seconds. A reportWith
function allows variations of the default settings for controlling values such as: the time
limit, the number of test values, and the number of mutant variations.

50

How FitSpec Works 4.4

Step 4. Use results to refine the property-set If a surviving mutant is reported, a
typical response from the user is to add a new property, or to strengthen an existing one,
so as to “kill” this mutant; then re-test (Step 3).

If there are reported conjectures, a typical response from the user is first to examine
these conjectures to see if they are indeed true. (Where this cannot be determined, the
relevant subset of properties might be re-tested using larger test-control values.) Where a
conjecture is verified, there is an opportunity to remove one or more properties from the
set used for testing; then re-test (Step 3).

If no surviving mutant or plausible conjecture is reported, we can stop. Provided that
we take care when removing properties, in the end we may hope to obtain a property-set
that is stronger than the one we started with, yet simpler. At the least it will be no weaker,
and without any redundancies discovered by testing.

When there are no surviving mutants, we may conjecture that a property-set is com-
plete. However, because of the inevitable limitations of testing, this conjecture could turn
out to be false: there may be a mutant beyond those tested that would have survived.
(Here again, one option for the user is re-testing with larger test-control values.)

Example 4.1 (revisited) The following Haskell program analyses the final property-set
from the example in the introduction.

import Test.FitSpec
import Data.List (sort) -- function under test

properties :: ([Int]->[Int]) -> [Property]
properties sort =
[property $ \xs -> ordered (sort xs)
, property $ \xs -> length (sort xs) == length xs
, property $ \x xs -> elem x (sort xs) == elem x xs
, property $ \x xs -> count x (sort xs) == count x xs
]

main = reportWith args{names = ["sort xs"]} sort properties

Values of the sort argument of the properties function will be mutated variants of the
original and definitive sort function passed as argument to reportWith. Since FitSpec
uses type-guided enumeration, we have to bind sort to a specific type in the type signature
of properties. �

4.4 How FitSpec Works

This section presents details of how FitSpec works. We explore how mutants are enu-
merated (§4.4.1) and how mutants are tested against properties (§4.4.2) in searches for
surviving mutants (§4.4.3), how conjectures are made based on test results (§4.4.4), how
we control the extent of testing (§4.4.5), and how we show mutants (§4.4.5).

51

4 FitSpec: refining properties for functional testing

4.4.1 Enumerating Mutants

Unlike traditional mutation-testing techniques [DeMillo et al., 1978], FitSpec adopts a
black-box view of functions under test. Mutants have a finite list of exceptional cases in
which their results differ from those of the original function. So mutants of a function f
can be expressed in the following form:

\x -> case x of
<value1> -> <result1>
<value2> -> <result2>
... -> ...
<valueN> -> <resultN>
_ -> f x

This section explains how such mutants are enumerated.
Mutants defined in this way may be stricter than the original function. As we test

properties only with finite and fully defined arguments, strictness is rarely an issue in
practice. However, if the result of a property test is undefined, we catch the exception and
treat the test as a failing case.

Mutable typeclass Instances of a Mutable typeclass define a mutiers function com-
puting tiers (§3.2) of mutants of a given value:

class Mutable a where
mutiers :: a -> [[a]]

The first tier contains the equivalent mutant, of size 0, the second tier contains mutants of
size 1, the third tier contains mutants of size 2, and so on. The size of a mutant is defined
by the instance implementor. As a default, mutant-size can be calculated as the sum of
the number of mutated cases and the sizes of arguments and results in these cases.

The equivalent mutant is the original function without mutations. As the first tier
contains exactly the equivalent mutant, a product of mutiers can be computed by ><
(§3.2). Also, tail mutiers contains exactly the non-equivalent mutants.

The mutants function lists mutants of a given value of some Mutable type:

mutants :: Mutable a => a -> [a]
mutants = concat . mutiers

Enumerating Data Mutants For Listable datatypes in the Eq class, the following
function can be used as the definition of mutiers:

mutiersEq :: (Listable a, Eq a) => a -> [[a]]
mutiersEq x = [x] : deleteT x tiers

The deleteT function deletes the first occurrence of a value in a list of tiers. Assuming
the underlying Listable enumeration has no repeated element, this definition guarantees

52

How FitSpec Works 4.4

that there is no repeated mutant. Having no repeated data mutant will be necessary to
avoid equivalent and repeated functional mutants.

Example 4.6 Recalling the natural-number type Nat from §3.2, defined as a wrapper
over Ints:

newtype Nat = Nat Int

a Mutable instance for Nat is given by:

instance Mutable Nat where
mutiers = mutiersEq

Evaluating mutiers 3 :: [[Nat]] yields:

[[3], [0], [1], [2], [], [4], [5], [6], [7], ...]

The original value has size zero; other mutant values have one added to their sizes; the
fifth tier is empty as there is no inequivalent mutant to occupy it. �

Enumerating Functional Mutants Each single-case mutation of a function is defined
by an exception pair. Recall the mutate function (§3.5) that mutates a function given a
list of exception pairs:

mutate :: Eq a => (a -> b) -> [(a,b)] -> (a -> b)
mutate f ms = foldr mut f ms
where
mut (x’,fx’) f x | x == x’ = fx’

| otherwise = f x

The mutationsFor function returns tiers of exception pairs for a given function in a
given single case.

mutationsFor :: Mutable b => (a -> b) -> a -> [[(a,b)]]
mutationsFor f x = ((,) x) ‘mapT‘ tail (mutiers $ f x)

The mutiersOn function takes a function and a list of arguments for which results
should be mutated; it returns tiers of mutant functions.

mutiersOn :: (Eq a, Mutable b) => (a -> b) -> [a] -> [[a -> b]]
mutiersOn f xs = mutate f ‘mapT‘ products (map (mutationsFor f) xs)

We can now give a Mutable instance for functional types:

instance (Eq a, Listable a, Mutable b) => Mutable (a -> b) where
mutiers f = mutiersOn f ‘concatMapT‘ setsOf tiers

The function concatMapT is a variation of concatMap for tiers (§3.2). The function
products takes the product of n lists of tiers producing lists of length n:

products :: [[[a]]] -> [[[a]]]
products = foldr (productWith (:)) [[[]]]

53

4 FitSpec: refining properties for functional testing

Example 4.7 The function not :: Bool -> Bool has three inequivalent mutants:

\p -> case p of False -> False; _ -> not p
\p -> case p of True -> True; _ -> not p
\p -> case p of False -> False; True -> True

The first two are of size 1. The last is of size 2. �

Example 4.8 The first four inequivalent mutants for the function id :: Nat -> Nat
are:
\x -> case x of 0 -> 1; _ -> id x
\x -> case x of 1 -> 0; _ -> id x
\x -> case x of 0 -> 2; _ -> id x
\x -> case x of 2 -> 0; _ -> id x

The first two are of size 2, and the last two are of size 3. �

Example 4.9 The first three inequivalent mutants of the natural-number addition func-
tion (+) are:

\x y -> case (x,y) of (0,0) -> 1; _ -> x + y
\x y -> case (x,y) of (0,1) -> 0; _ -> x + y
\x y -> case (x,y) of (1,0) -> 0; _ -> x + y �

Table 4.1 shows, for a few example functions, the number of inequivalent mutants in
successive tiers. In the worst case, this number increases by around 3× as size increases
by one.

4.4.2 Testing Mutants against Properties

As we saw in §4.3, in order to collect property functions of different types into a single
list, we apply FitSpec’s property function to each of them. The property function is
polymorphic over the class of Testable types (§3.3):

property :: Testable a => a -> Property

The Property type is defined as a synonym:

type Property = [([String],Bool)]

Here each list of strings is a printable representation of one possible choice of argument
values for the property. Each boolean paired with such a list indicates whether the property
holds for this choice. The outer list is potentially infinite and lazily evaluated.

A function propertyHolds, similar to holds, takes as arguments a number of tests and
a Property; it returns True if the property holds in all tested cases, and False otherwise.

propertyHolds :: Int -> Property -> Bool
propertyHolds n = and . map snd . take n

54

How FitSpec Works 4.4

Table 4.1: Numbers of inequivalent mutants in successive tiers for several original functions.
Tier Number of mutants of:

not id (+) sort
:: Bool :: Nat :: Nat :: [Nat]
-> Bool -> Nat -> Nat -> [Nat]

-> Nat

1 2 0 0 0
2 1 2 3 2
3 – 2 4 4
4 – 5 12 13
5 – 7 24 32
6 – 13 56 87
7 – 19 113 220
8 – 34 247 581
9 – 49 499 1470
10 – 80 1034 3772

Example 4.1 (revisited) Consider the following sort mutant:

sort’ :: [Nat] -> [Nat]
sort’ [0,0,1] = [0,1,1]
sort’ xs = sort xs

To test whether sort’ satisfies the final property-set in Example 4.1 for 1000 test lists, we
evaluate

propertyHolds 1000 ‘map‘ properties sort’

obtaining

[True, True, True, False]

as sort’ gives ordered results, preserving length and membership, but not preserving
element count in the exceptional case. �

4.4.3 Searching for Survivors

Surviving mutants are those for which every test result returned by propertyHolds is
True.

Example 4.1 (revisited) Recall the incomplete property set describing sort given in
§4.1. Testing up to 4000 mutants for 4000 test arguments

[m | m <- take 4000 . tail $ mutants sort
, and $ propertyHolds 4000 ‘map‘ properties1 m]

55

4 FitSpec: refining properties for functional testing

three mutants survive:

[\x -> case x of [0,0,1] -> [0,1,1]; _ -> sort x
, \x -> case x of [0,1,0] -> [0,1,1]; _ -> sort x
, \x -> case x of [1,0,0] -> [0,1,1]; _ -> sort x]

If instead we use the complete property set, the result of the same test is an empty list. �
In the actual FitSpec implementation, any reported surviving mutant is taken from the

list of surviving mutants for the strongest property-set equivalence class — see the next
section.

4.4.4 Conjecturing Equivalences and Implications

This section describes how FitSpec conjectures equivalences and implications between sub-
sets of properties.

Properties ×Mutants Using propertyHolds and mutants, we test m mutants against
each of p properties using n choices of test arguments. We derive p × m boolean values
each indicating whether a mutant survives testing against a property. These results are
computed as a value of type [(Int,[Bool])] where each Int is a property number, paired
with test outcomes for each mutant.

Property sets × Mutants Then, for each mutant, we generate 2p ×m boolean values
— the conjunctions of test results for each property subset. These results are computed as
a value of type [([Int],[Bool])] where each [Int] represents a property subset.

Equivalence Classes × Mutants Next, property sets are grouped into equivalence
classes. Two sets are put in the same class if they kill the same mutants. Equivalence
classes are then sorted by the number of surviving mutants. The results are now of type
[([[Int]],[Bool])] where each [[Int]] represents an equivalence class of property sub-
sets.

Finally, we identify apparent equivalences and implications, according to the following
definitions, and report those not subsumed by any other.

Definition (apparent equivalence) Two property sets are apparently equivalent (with
respect to specified sets of mutant functions and test arguments) if the property sets kill
the same mutants. �

Definition (apparent implication) A set of properties apparently implies another set
(with respect to specified sets of mutant functions and test arguments) if whenever a
mutant survives testing against the first set it also survives testing against the second. �

56

How FitSpec Works 4.4

StrongMildWeak Mild Weak

0% 11% 33% 66% 88% 100%

Figure 4.1: Conjecture strengths by percent of surviving mutants.

Strength We have observed that conjectures often do not hold when a supporting sur-
vival rate is either 0% or 100%. By interpolation, we speculate that equivalences and
implications are more likely to hold when survival rates for mutants are closer to 50%, and
less likely to hold when survival rates are closer to 0% or 100%. So when FitSpec reports
equivalences and implications it sorts them accordingly, reporting first those most likely to
hold. Each conjecture is also labelled “strong”, “mild” or “weak” according to the scale in
Figure 4.1. This describes how we have implemented the tool, but there is no good reason:
again, this is a choice based on speculation.

4.4.5 Controlling the Extent of Testing

Choosing the Numbers of Tests and Mutants There is no general rule for choos-
ing appropriate numbers of mutants and test arguments. The most effective values vary
between different applications.

By default, FitSpec starts with 500 mutants and 1000 test values per property. As we
saw in §4.3, reportWith allows the user to choose different values. After each round of
testing, both numbers are increased by 50%. Testing continues until a time limit is reached
(by default, 5 seconds).

Choosing the Sizes of Types During case studies (§4.5) involving polymorphic func-
tions, we found it helpful to limit generated test values using small instance types. FitSpec
predefines types for small signed integers (IntN) and unsigned integers (WordN), where N
is a bit-width in the range 1..4. See §4.5.2 for further discussion.

Showing mutants FitSpec provides two different functions to show mutants: one shows
mutants as a tuple of lambdas; the other shows the inequivalent mutants only, as top-level
declarations. Both have the following type:

ShowMutable a => [String] -> a -> a -> String

The [String] argument gives names of functions. The other arguments are a tuple of
original functions and a tuple of mutated functions. The ShowMutable class has a method
to show a mutated value given also the original value; instances for user-defined datatypes
can be automatically derived. We omit details of the implementation as they are not
central to the technique described here.

57

4 FitSpec: refining properties for functional testing

Example 4.10 One mutant of id :: Int -> Int swaps results for argument values
1 and 2:

id’ :: Int -> Int
id’ = id ‘mutate‘ [(1,2),(2,1)]

Evaluating

showMutantAsTuple ["id","not"] (id, not) (id’, not)

yields (as a string):

(\x -> case x of
0 -> 1
1 -> 0
_ -> id x

, not)

If we instead use showMutantDefinition, we get:

id’ 0 = 1
id’ 1 = 0
id’ x = id x �

ShowMutable instances for user-defined types can be automatically derived by the func-
tion deriveMutable (§4.3).

4.5 Example Applications and Results
In this section, we use FitSpec to refine properties of: boolean negation and conjunction
operators (§4.5.1); sorting (§4.5.2); merge on min-heaps (§4.5.3); set membership, insertion,
deletion, intersection, union (§4.5.4), powersets and partitions (§4.5.5); path and subgraph
on digraphs (§4.5.6). These example applications are of increasing complexity.

In §4.5.1 and §4.5.3, we use QuickSpec [Claessen et al., 2010] to generate initial property
sets. QuickSpec already incorporates some techniques to refine its output, but we hope
for further refinements in the light of FitSpec results. In §4.5.2, our evaluation includes
measurements showing the influence of element-type on FitSpec’s performance. In most
of the examples where functions have polymorphic types, we use instances of the Word2
type. The non-standard Word2 type represents two-bit positive integers and is provided by
FitSpec. It is analogous to the standard Word8 and Word16 types.

4.5.1 Boolean Operators

As a very simple first application, we apply FitSpec to properties generated by QuickSpec
[Claessen et al., 2010] for boolean negation and conjunction. We chose this application to
double-check FitSpec’s functionality as results are easy to verify by hand. Nevertheless,
we were not left unsurprised by the results.

58

Example Applications and Results 4.5

Given the functions not and (&&), and the value False, QuickSpec generates the fol-
lowing set of properties.

1. \p -> not (not p) == p
2. \p q -> p && q == q && p
3. \p -> p && p == p
4. \p -> p && False == False
5. \p q r -> p && (q && r) == (p && q) && r
6. \p -> p && not p == False
7. \p -> p && not False == p

There are four different minimal subsets of these properties that completely specify the
pair of functions (not,(&&)). By testing 63 mutant pairs, FitSpec finds and reports this
result.

Complete but non-minimal specification
22 tests (exhausted), 63 mutants (exhausted)

0 survivors (100% killed)
minimal property subsets: {1,3,6} {1,4,7}

{3,6,7} {4,6,7}
conjectures: {3} ==> {5} 76% killed (mild)

{2,7} ==> {5} 88% killed (mild)
{2,4} ==> {5} 88% killed (mild)
{1,5,6} ==> {2} 93% killed (weak)
{6,7} ==> {1} 95% killed (weak)
{2,6,7} = {5,6,7} 96% killed (weak)
{1,2,4,6} = {1,4,5,6} 96% killed (weak)
{3,6} ==> {4} 96% killed (weak)
{4,7} ==> {2,3,5} 98% killed (weak)

The absence of commutativity (Property 2) and associativity (Property 5) from all four
minimal property subsets might seem surprising, but both are indeed entailed by each of
these subsets. The first conjecture {3} ==> {5} was even more surprising to one of our
colleagues, and to at least one reviewer of our paper about FitSpec [Braquehais and Runci-
man, 2016], but it is correct — all idempotent binary boolean operators are associative.

4.5.2 Sorting

Now we increase the complexity in relation to the boolean example while still keeping it
simple. Consider the following properties of sort, which are similar to those given in §4.1.
This set of properties is a complete but not minimal specification of sort.

59

4 FitSpec: refining properties for functional testing

Table 4.2: How enlarging the sorted element-type increases the parameters necessary to
reach convergence. In practice, Word2 is sufficient to obtain good results.

Type Parameters for converging results
#-mutants #-tests / prop. Time Memory

Bool 1000 1000 1s 28MB
Word1 2000 2000 3s 39MB
Word2 4000 4000 12s 62MB
Word3 4000 100000 6m 43s 114MB
Int 4000 100000 6m 36s 114MB

1. \xs -> ordered (sort xs)
2. \xs -> length (sort xs) == length xs
3. \x xs -> elem x (sort xs) == elem x xs
4. \x xs -> count x (sort xs) == count x xs
5. \xs -> permutation xs (sort xs)
6. \x xs -> insert x (sort xs) == sort (x:xs)

Effect of element type on performance As sort is polymorphic, testing depends on
the choice of a specific element type. This choice affects both the results obtained and the
resources needed to obtain them.

We say that FitSpec results have converged when increasing the number of test-cases
used makes no significant difference to the results obtained. After convergence, the reported
minimal property-subsets and conjectures stay the same, despite changes in the number of
tests, number of mutants and percentages of surviving mutants.

The smaller the type, the lower the values of test-control parameters, and the less run-
time, we need to obtain convergence (see Table 4.2). For all the examples we present,
Word2 (or Int2) offers a good balance between diversity of values and performance. So,
we shall use Word2 for this and other examples involving polymorphic functions.

In Table 4.2, it might seem surprising that converging parameters for the isomorphic
types Bool and Word1 are different. However, their Listable instances differ, hence the
difference:

tiers :: [[Bool]] = [[False,True]]
tiers :: [[Word1]] = [[0], [1]]

Still in Table 4.2, the reported memory and time usage are those for the listed parameters.

FitSpec results Given the above properties, FitSpec reports:

60

Example Applications and Results 4.5

Apparent complete but non-minimal specification
28000 tests, 4000 mutants

0 survivors (100% killed)
apparent minimal property-subsets: {6} {1,4} {1,5}
conjectures: {4} = {5} 99% killed (weak)

{4} ==> {2,3} 99% killed (weak)

Two of the reported apparent minimal sets, {1,4} and {1,5}, are indeed minimal and
complete specifications for a sorting function. The two reported conjectures are also correct.

Property 6 is also reported as an apparently complete specification, but consider the
function sort’ defined by

sort’ :: (Ord a, Bounded a) => [a] -> [a]
sort’ = foldr insert [maxBound]

or equivalently (for finite and fully-defined arguments):

sort’ xs = sort xs ++ [maxBound]

Substituting sort’ for sort in Property 6, it is easy to see that it holds: unfold both uses
of sort’ and then the right-hand foldr application. Yet the results of sort and sort’
differ for all finite and fully-defined arguments!

Mutants like sort’, which alter the result in an unbounded number of cases, are not
generated by FitSpec. If a user realises there is a counterexample of this kind, their best
option currently is to declare it as a user-defined mutant. If we declare sort’ as a mutant,
Property 6 alone is correctly reported as an incomplete specification. For further discussion
see §4.7.

4.5.3 Binary Heaps

We now apply FitSpec to the Heap example provided with the QuickSpec tool package.
To limit the extent of this example, we only explore properties of the function merge:

merge :: Ord a => Heap a -> Heap a -> Heap a

If we run QuickSpec with all other functions declared as part of the background algebra,
it generates the following properties:

1. \h h1 -> merge h h1 == merge h1 h
2. \h -> merge h Nil == h
3. \x h h1 -> merge h (insert x h1) == insert x (merge h h1)
4. \h h1 h2 -> merge h (merge h1 h2) == merge h1 (merge h h2)
5. \h -> findMin (merge h h) == findMin h
6. \h -> null (merge h h) == null h
7. \h -> merge h (deleteMin h) == deleteMin (merge h h)
8. \h h1 -> (null h && null h1) == null (merge h h1)

61

4 FitSpec: refining properties for functional testing

We soon discover that we should add a pre-condition to Properties 5 and 7, as they only
work for non-null heaps.

5. \h -> not (null h) ==> findMin (merge h h) == findMin h
7. \h -> not (null h) ==> merge h (deleteMin h) == deleteMin (merge h h)

In order to apply FitSpec, we first wrap the properties appropriately, to form a dec-
laration of a FitSpec property-map. We then declare an appropriate Listable instance
(§3.2) for Heaps:

instance (Ord a, Listable a) => Listable (Heap a) where
tiers = mapT fromList (bagsOf tiers)

Running FitSpec, we obtain this report:

Apparent complete but non-minimal specification
32000 tests, 2000 mutants

0 survivors (100% killed)
apparent minimal property subsets: {3} {4} {1,2,5,7}

Property 4 alone is reported as an apparent minimal (and complete) property subset but
it is not. For example, a merge function always giving Nil as result follows Property 4 but
does not follow Properties 2, 5, 6, 7 and 8.

conjectures: {2,5} ==> {6} 64% killed (strong)
{2,7} ==> {6} 68% killed (mild)
{8} ==> {6} 74% killed (mild)
{1,2,6} = {1,2,8} 98% killed (weak)
{1,2,5} ==> {8} 99% killed (weak)
{1,2,7} ==> {8} 99% killed (weak)

It is striking that three conjectures suggest Property 6 is implied by other properties.
Indeed, it is easy to see that it follows from Property 8 (let h1=h). Property 3 alone cannot
specify merge despite being reported as a minimal-complete specification. But looking at
insert’s definition, we can see why FitSpec reports it as such:

insert :: Ord a => a -> Heap a -> Heap a
insert x h = merge h (branch x Nil Nil)

The function insert is defined by merge— and since FitSpec treats functions as black-box,
it does not mutate the application of merge in insert’s definition.

Properties 1, 2, 5 and 7 give the best refinement of the initial property set.

4.5.4 Operations over Sets

We next apply FitSpec to a basic repertoire of six functions from a set library: set mem-
bership (<˜), insertion (insertS), deletion (deleteS), intersection (/\), union (\/) and
set containment (subS). For FitSpec runs reported in this section, the time limit was the
default 5s, and the declared type of element values was Word2.

62

Example Applications and Results 4.5

First, we need a suitable Listable instance for sets, for which the underlying repre-
sentation is ordered lists without repetition.

instance (Ord a, Listable a) => Listable (Set a) where
tiers = mapT set (setsOf tiers)

Turning now to properties, our approach for this example is to begin by formulating
the first properties that come to mind, ensuring that each function under test occurs in at
least one property. We then let FitSpec results guide us in a process of refinement towards
a minimal and complete specification. Our initial properties are:

1. \x s -> x <~ insertS x s
2. \x s -> not (x <~ deleteS x s)
3. \x s t -> (x <~ (s \/ t)) == (x <~ s || x <~ t)
4. \x s t -> (x <~ (s /\ t)) == (x <~ s && x <~ t)
5. \s t -> subS s (s \/ t)
6. \s t -> subS (s /\ t) s
7. \s t -> (s \/ t) == (t \/ s)
8. \s t -> (s /\ t) == (t /\ s)

FitSpec reports that this initial set of properties is neither complete nor minimal:

Apparent incomplete and non-minimal specification
3200 tests (exhausted), 750 mutants

49 survivors (93% killed), smallest:
subS’ {0} {} = True
subS’ s t = subS s t

apparent minimal property-subsets: {1,2,3,4,5}
{1,2,3,4,6}

conjectures: {3} ==> {7} 45% killed (strong)
{4} ==> {8} 31% killed (mild)

{3,6} ==> {5} 72% killed (mild)
{3,4,5} = {3,4,6} 75% killed (mild)

Prompted by the surviving mutant, we realise that no property involving subS ever de-
mands a False result. All the reported implications do indeed hold, so we choose to remove
Properties 7 and 8 — from any minimal specification and test set, at least. We also replace
properties 5 and 6 by a stronger combined property about subS using a minor variant allS
of the standard all function already defined in the Set library.

1. \x s -> x <~ insertS x s
2. \x s -> not (x <~ deleteS x s)
3. \x s t -> (x <~ (s \/ t)) == (x <~ s || x <~ t)
4. \x s t -> (x <~ (s /\ t)) == (x <~ s && x <~ t)
5. \s t -> subS s t == allS (<~ t) s

63

4 FitSpec: refining properties for functional testing

FitSpec now reports minimality but incompleteness of the property set, indicating the fol-
lowing surviving mutant:

deleteS’ 0 {} = {1}
deleteS’ x s = deleteS x s

There are no further conjectures for us to think about. But the surviving mutant draws
attention to a remaining weakness: Property 2 requires that deleteS removes the given el-
ement, but not that it retains others. Other surviving mutants point to a similar deficiency
for Property 1 about insert. We strengthen both properties accordingly:

1. \x y s -> x <~ insertS y s == (x == y || x <~ s)
2. \x y s -> x <~ deleteS y s == (x <~ s && x /= y)
3. \x s t -> (x <~ (s \/ t)) == (x <~ s || x <~ t)
4. \x s t -> (x <~ (s /\ t)) == (x <~ s && x <~ t)
5. \s t -> subS s t == allS (<~ t) s

FitSpec reports no conjectures and no surviving mutants:

Apparent complete and minimal specification
2816 tests, 750 mutants

Indeed, these five properties provide an exact specification, by correspondence with results
of Boolean membership test, for these operations on sets.

4.5.5 Powersets and Partitions

Two further functions from the same library each take a set as argument. One computes
all subsets (powerS) and the other all divisions into pair-wise disjoint non-empty subsets
(partitionsS).

For properties of these functions, we proceed in a similar way. The basic functions,
including those for which properties were developed in the previous section, are now fixed.
We work instead with properties of powerS and partitionsS — and mutant variations of
these functions.

Our initial properties are as follows.

1. \s t -> (t <~ powerS s) == subS t s
2. \s -> allS (allS (‘subS‘ s)) (partitionsS s)

For powerS we show we have learnt our lesson from §4.5.4! For partitionsS we know
Property 2 is not enough, but will FitSpec results point to the deficiencies?

Apparent minimal but incomplete specification.
2542 survivors (91% killed), smallest:
partitionsS’ {} = {}
partitionsS’ s = partitionsS s

We add a limited refinement driven directly by the reported mutant.

3. \s -> nonEmptyS (partitionsS s)

64

Example Applications and Results 4.5

Now FitSpec reports

Apparent minimal but incomplete specification.
459 survivors (97% killed), smallest:
partitionsS’ {} = {{{}}}
partitionsS’ s = partitionsS s

so we add:

4. \s -> allS (\p -> unionS p == s && allS nonEmptyS p) (partitionsS s)

Again we run FitSpec:

Apparent incomplete and non-minimal specification
288 tests, 19210 mutants

6 survivors (99% killed), smallest:
partitionsS’ {0,1} = {{{0,1}}}
partitionsS’ s = partitionsS s

apparent minimal property-subsets: {1,3,4}
conjectures: {4} ==> {2} 71% killed (mild)

Seeing the conjecture is indeed true, we remove Property 2. Prompted by the un-
duly restrictive mutant, which excludes the valid partition {{0},{1}}, we combine and
reformulate Properties 3 and 4 to form a new Property 2:

1. \s t -> (t <~ powerS s) == subS t s
2. \s p -> (p <~ partitionsS s)

== (unionS p == s &&
allS nonEmptyS p &&
sum (map sizeS (elemList p)) == sizeS s)

FitSpec reports that these two properties apparently form a minimal and complete speci-
fication of powerS and partitionsS — as indeed they do.

Bug report During our work on this example, we actually found a long-concealed bug.
As we were refining properties of partitionsS, at one stage FitSpec reported:

ERROR: The original function-set does not follow property-set.
Counter-example to property 2: {0,1,2} {{0,1,2}}
Aborting.

A data invariant for the set representation requires ordered lists. The definition of the
function partitionsS was intended to list partitions in a “clever” way to avoid reordering,
but in some cases could break the invariant for the outer set. We fixed it. Conclusion:
applying a new tool can be insightful!

65

4 FitSpec: refining properties for functional testing

4.5.6 Operations over Digraphs

Lastly, we apply FitSpec to a directed-graph library based on the datatype

data Digraph a = D {nodeSuccs :: [(a,[a])]}

where values of some ordered type a are node identifiers — or more simply “nodes”. Each
pair in a strictly ordered nodeSuccs list represents a node and an ordered list of its digraph
successors.

To limit the extent of this example, we focus on two functions:

isPath :: (Ord a, Eq a) => a -> a -> Digraph a -> Bool
subGraph :: Eq a => [a] -> Digraph a -> Digraph a

Given two nodes and a digraph, isPath tests whether there is a path in the digraph from
the first node to the second. Given a list of nodes and a digraph, subgraph returns a
restricted version of the digraph excluding any nodes not in the list.

We first declare a Listable instance for Digraph:

tiers = concatMapT graphs $ setsOf tiers
where
graphs ns = mapT (D . zip ns) . listsOfLength (length ns) . setsOf

$ toTiers ns

Then we formulate a few properties we expect the two functions to satisfy, including a
property involving both of them. Our properties make use of three of the more basic
functions from the digraph library: nodes lists the nodes in a graph; isNode and isEdge
check whether a given node or edge occur in a graph.

1. \n d -> isPath n n d == isNode n d
2. \n1 n2 n3 d -> isPath n1 n2 d && isPath n2 n3 d ==> isPath n1 n3 d
3. \d -> subgraph (nodes d) d == d
4. \ns1 ns2 d -> subgraph ns1 (subgraph ns2 d)

== subgraph ns2 (subgraph ns1 d)
5. \n1 n2 ns d -> isPath n1 n2 (subgraph ns d) ==> isPath n1 n2 d

Strengthening the property set FitSpec reports a surviving isPath mutant:

isPath’ 0 1 (D [(1,[1])]) = True
isPath’ n1 n2 d = isPath n1 n2 d

Except in the case where they are equal (Property 1), we have not said that starting and
finishing nodes of a path at least occur in the digraph! More generally, for distinct nodes,
we realise that transitivity (Property 2) only holds isPath to account by self-consistency.
As a remedy, we add:

6. \n1 n2 d -> isPath n1 n2 d ==> isNode n1 d && isNode n2 d
7. \n1 n2 d -> isPath n1 n2 d && n1 /= n2

==> any (\n1’ -> isPath n1’ n2 d) (succs n1 d)

66

Example Applications and Results 4.5

FitSpec now reports a surviving subgraph mutant:

subgraph’ [1] (D [(0,[]),(1,[])]) = D []
subgraph’ ns d = subgraph ns d

Aside from the special all-nodes case (Property 3) we have not said what nodes or edges
subgraph should retain or discard. Again an algebraic law, this time commutativity (Prop-
erty 4), only requires self-consistency. We add a definitive property about subgraph nodes,
and another about subgraph edges:

8. \n ns d -> isNode n (subgraph ns d) == (isNode n d && n ‘elem‘ ns)
9. \n1 n2 ns d -> isEdge n1 n2 (subgraph ns d)

== (isEdge n1 n2 d && n1 ‘elem‘ ns && n2 ‘elem‘ ns)

FitSpec reports the following mutant:

isPath’ 1 0 (D [(0,[]),(1,[0])]) = False
isPath’ n1 n2 d = isPath n1 n2 d

By making Property 7 an implication with an isPath test on the left, we allow a false-for-
true mutant to survive. Our reformulation involves subgraph:

7. \n1 n2 d -> n1 /= n2 ==> isPath n1 n2 d
== let d’ = subgraph (nodes d \\ [n1]) d in

any (\n1’ -> isPath n1’ n2 d’) (succs n1 d)

At last it seems we have a specification:

Apparent complete but non-minimal specification
0 survivors (100% killed)

Minimizing the property-set FitSpec’s report continues:

apparent minimal property subsets:
{1,4,7,8} {1,7,8,9} {4,5,6,7,8} {5,6,7,8,9}

conjectures:
{1,7} ==> {6} 52% killed (strong)
{6} ==> {2} 47% killed (strong)
{7} ==> {2} 41% killed (strong)
{4,8} = {8,9} 68% killed (mild)
{4,8} ==> {3} 68% killed (mild)
{5} ==> {2} 80% killed (mild)
{1,5,7} = {5,6,7} 87% killed (mild)
{1,4,6} ==> {5} 96% killed (weak)
{1,6,8} ==> {5} 98% killed (weak)

In brief, the following property set indeed minimally specifies subgraph and isPath:

67

4 FitSpec: refining properties for functional testing

Example #-mutants #-tests time space

Bool (§4.5.1) 63 8 < 1s 18MB
Sorting (§4.5.2) 4000 4000 12s 62MB
Heaps (§4.5.3) 4000 2000 42s 102MB
Basic Sets (§4.5.4) 750 1024 5s 22MB
Sets of Sets (§4.5.5) 17441 256 5s 58MB
Digraphs (§4.5.6) 750 1500 12s 1853MB

Table 4.3: Summary of Performance Results: figures are mean values across all runs;#-
mutants = number of mutants; #-tests = maximum number of test-cases for any property;
time = rounded elapsed time and space = peak memory residency (both from GNU time).

1. \n d -> isPath n n d == isNode n d
7. \n1 n2 d -> n1 /= n2 ==> isPath n1 n2 d

== let d’ = subgraph (nodes d \\ [n1]) d in
any (\n1’ -> isPath n1’ n2 d’) (succs n1 d)

8. \n ns d -> isNode n (subgraph ns d) == (isNode n d && n ‘elem‘ ns)
9. \n1 n2 ns d -> isEdge n1 n2 (subgraph ns d)

== (isEdge n1 n2 d && n1 ‘elem‘ ns && n2 ‘elem‘ ns)

4.5.7 Performance Summary

Our tool and examples were compiled using ghc -O2 (version 7.10.3) under Linux. The
platform was a PC with a 2.2Ghz 4-core processor and 8GB of RAM. Some performance
results are summarized in Table 4.3.

When using FitSpec, ideally users should decide how long they want to wait for FitSpec
to run; the simplest parameter to adjust with confidence is the time limit. Reported figures
for numbers of mutants and test-cases help the user decide whether to re-run FitSpec
allowing more time.

As noted in §4.5.2, for polymorphic functions, the element type affects both the results
obtained and resources needed to obtain them. For the examples we present, Word2 offers
a good balance between diversity of values and performance.

4.6 Comparison with Related Work

QuickSpec Claessen et al. [2010] present the QuickSpec tool, which is able to generate
algebraic specifications automatically (§2.2.1). Although QuickSpec has rules by which
some properties can be discarded as redundant, the goal of its developers was not to
generate minimal sets of properties, but instead interesting properties.

68

Comparison with Related Work 4.6

Bool (§4.5.1) and Heaps (§4.5.3) As we show in §4.5.1 and §4.5.3, FitSpec can assist in
the refinement of specifications generated by QuickSpec.

Basic Sets (§4.5.4) For comparison, consider again the basic functions of the set library
(§4.5.4), an example where we did not start with QuickSpec-generated properties. We
can compare our final specification with QuickSpec’s output. In the Set library example,
QuickSpec 1 [Claessen et al., 2010] generates a complete specification with 70 properties.
QuickSpec 2 [Smallbone et al., 2017] generates a complete specification with 43 properties,
not including any of ours. This striking difference is maybe due to the fact that in our
final specification, we appeal to functions outside the set library.

MuCheck Le et al. [2014] present MuCheck, a tool for mutation testing in Haskell. Both
MuCheck and FitSpec provide a measure for property-set completeness (§2.2.4). Table 4.4
summarizes the differences between MuCheck and FitSpec. Unlike FitSpec, MuCheck:
• depends on source-code annotations;

• generates mutants by transformations of the source code;

• does not provide conjectures or any form of automated guidance towards minimiza-
tion;

• may generate mutants equivalent to the original function;

• by default, does not show surviving mutants as they might be equivalent to the
original function.

For comparison, we apply MuCheck (version 0.3.0.0, with QuickCheck test adapter version
0.3.0.4) to two of the case studies from §4.5.

Sorting (§4.5.2) Consider the following explicit definition of sort, which is used as an
example by Le et al. [2014].

sort [] = []
sort (x:xs) = sort l ++ [x] ++ sort r
where
l = filter (< x) xs
r = filter (>= x) xs

Given this definition, and Properties 1–6 listed in §4.5.2, MuCheck with default settings
gives the following output.

Total mutants: 13
alive: 1/13
killed: 12/13 (92%)

MuCheck does not detect that the only surviving mutant is actually an equivalent mutant
formed by swapping pattern match cases:

69

4 FitSpec: refining properties for functional testing

Table 4.4: FitSpec contrasted with MuCheck and Duregård’s framework: =yes; =no

M
uC

he
ck

D
ur
eg
år
d’
s

F
it
Sp

ec

Random mutant generation
Enumerative mutant generation

Syntactic mutants
Semantic/black-box mutants

Avoids equivalent mutants

Guidance towards completion of property sets
Guidance towards minimization of property sets

sort’ (x:xs) = sort’ l ++ [x] ++ sort’ r
where
l = filter (< x) xs
r = filter (>= x) xs

sort’ [] = []

MuCheck does not consider property subsets. However, if we manually select subsets of
properties, results include:

• 1 (equivalent) surviving mutant for Properties 2, 4, 5 and 6 alone;

• 3 surviving mutants for Properties 1 and 3 combined (e.g.: the mutant in which >=
is changed to >);

• 5 surviving mutants for Property 1 (e.g.: changing >= to ==);

• 5 surviving mutants for Property 3 (e.g.: changing >= to /=).

It takes from 2 to 4 seconds to run MuCheck for each property subset. MuCheck’s default
settings allow up to 300 mutants, but for this example it only generates 13.

In this example, with regards to evaluating minimality and completeness, FitSpec out-
performs MuCheck with default settings. However, MuCheck results might be improved
by the definition of custom mutation operators.

Basic Sets (§4.5.4) MuCheck derives no mutants for any of insertS, deleteS, subS, \/
or /\ (cf. §4.5.4). The reason may be that there are no MuCheck mutation operators
specific to the Set type, as we did not add any. For <˜, MuCheck does derive three
mutants, but it then fails because of an internal error. We did not investigate this error,
nor did we try applying MuCheck to other functions in the set library.

70

Conclusions and Future Work 4.7

Ultra-lightweight black-box mutation testing During the Haskell Implementor’s
Workshop 2014, Jonas Duregård gave a five-minute “lightning talk” about a lightweight
technique for mutation testing in Haskell [Duregård, 2014]: ultra-lightweight black-box
mutation testing. The technique damages result values randomly. In his thesis [Duregård,
2016], he provides a refined version. Unlike on FitSpec, the focus is only on completeness.
Table 4.4 summarizes the differences to FitSpec.

Mutation testing beyond Haskell In a survey of the development of mutation test-
ing, Jia and Harman [2011] specifically identify equivalent mutants as one of the barriers
to wider adoption of mutation testing. They propose several possible approaches to the
problem of equivalent mutants. The approach we have adopted in our work on FitSpec can
be characterised in their terms as: (1) “avoiding their initial creation”, and (2) “interest in
the semantic effects of mutation”. The competent programmer hypothesis [DeMillo et al.,
1978] states: “[Competent programmers] create programs that are close to being correct”.
In mutation-testing literature, mostly concerned with imperative languages [Jia and Har-
man, 2011, Le et al., 2014], closeness is usually regarded as syntactic closeness. We suggest
that a semantic notion of closeness is even more suitable for pure strongly-typed functional
programs: minor syntactic slips are very often caught by the type-checker; errors that are
harder to detect involve incorrect associations between input and output values.

Mutant subsumption graphs Kurtz et al. [2014] develop a mutant subsumption graph
model to describe redundancy among mutations. Subsumption is calculated according to
a specific collection of test sets. This is a visualization technique, to support the analysis
of the relationships between mutants. In FitSpec, we use the results of testing mutants to
build subsumption relations between properties.

Haskell Program Coverage The coverage tool HPC [Gill and Runciman, 2007] records
fine-grained expression-level coverage, and value coverage in syntactically boolean contexts.
By applying HPC to sources of properties, test-value generators and functions under test,
we can check the scope and reach of property-based testing. We can also detect automat-
ically when further exploration of the test-space seems unproductive. However, there are
well-known limitations of code-coverage measures: for example, they do not reveal faults of
omission [Marick, 1999]. HPC does not provide the kind of information needed to discover
apparent completeness or minimality of test properties.

4.7 Conclusions and Future Work
Conclusions In summary, we have presented the FitSpec tool to evaluate minimality and
completeness of sets of test properties for Haskell functions, providing automated assistance
in the task of refining those sets. As set out in §4.3 and §4.4, FitSpec tests mutant variations
of the functions under test and reports the number of surviving mutants and, if present, a
smallest surviving mutant. When there is apparent redundancy in a property set, FitSpec

71

4 FitSpec: refining properties for functional testing

reports conjectures in the form of equivalences and implications between property subsets.
We have demonstrated in §4.5 FitSpec’s applicability for a range of small examples, and
we have briefly compared in §4.6 some of the results obtained with related results from
other tools.

Completeness and the Value of Surviving Mutants Our experience, as represented by our
account of example applications in §4.5, is that details of surviving mutants do point out
weaknesses of property sets in a specific and helpful way. Though any mutant-killing re-
finement of properties depends on the programmer, the smallest-mutant reports are indeed
valuable prompts.

Reports of no surviving mutants suggest completeness. However, inherent limitations
of a test-based approach make these suggestions uncertain in most cases, and this is one
reason for the somewhat repetitive preambles at the head of all FitSpec reports: “Apparent
. . . specification, N tests, M mutants”. We saw in §4.5 examples where property sets are
incomplete yet kill all mutants. In some cases uncertainty can be resolved by increasing the
numbers of mutants and tests, but in other cases would-be survivors are never generated.
As a limited remedy, FitSpec allows the user to provide manually defined mutants to be
tested alongside those automatically generated.

Minimality and the Value of Conjectures The conjectured equivalences and implications
reported by FitSpec are surprisingly accurate in practice, despite their inherent uncer-
tainty in principle. As we hoped, these conjectures provide helpful pointers to apparently
redundant properties. Because conjectures are not guaranteed, before removing any test
properties programmers should seek to verify a conjecture that would justify the removal.
As we illustrated in §4.5, once we have a conjecture, verifying it often only requires a few
straightforward steps appealing to the properties involved — though in general, of course,
verification can be a difficult task.

Achieving minimality is useful, but it is comparatively less useful than achieving com-
pleteness. Sometimes a minimal property set may not be what the programmer wants
as redundant properties may find bugs faster or equivalent properties may find bugs a
different speeds. Also, the human reader may find some redundant properties easier to
understand. So, it may be useful to keep redundant properties as documentation.

Ease of use Arguably, a tool is easier to use if it requires less work from the programmer.
As we illustrated in §4.3, writing a minimal program to apply FitSpec takes only a few
lines of code. FitSpec provides functions mainDefault and mainWith, similar to report
and reportWith but parsing command-line arguments to configure test parameters. If
only standard Haskell datatypes are involved, no extra Listable instances are needed. If
user-defined data types can be freely enumerated without a constraining data invariant,
instances can be automatically derived. The wrapping of any existing test properties into
a property-map declaration is a minor chore.

However, often we do need to restrict enumeration by a data invariant, and a crude ap-
plication of a filtering predicate may be too costly, with huge numbers of discarded values.

72

Conclusions and Future Work 4.7

Effective use of FitSpec may require careful programming of custom Listable instances,
even if suitable definitions can be very concise. The FitSpec library does not currently in-
corporate methods to derive enumerators of values satisfying given preconditions [Bulwahn,
2012].

FutureWork We note a few avenues for further investigation that could lead to improved
versions of FitSpec or similar tools.

Alternative mutation techniques The current mutation technique based on individual ex-
ception cases has the advantage of simplicity, but its limitations are most apparent in
reports of zero survivors despite incomplete properties. A hybrid approach could generate
in addition mutants that alter results for all arguments, or a large class of arguments.
This is a characteristic of source-based mutants, but there are suitable classes of black-box
mutants too. For example, as we saw in §4.5, constant-result mutants may survive prop-
erties that kill exception-based mutants; or where there is an argument of the result type,
projection-based mutants would be another possibility.

Mutation of higher-order functions Our current mutation technique only works for first-
order functions. We might investigate ways to mutate higher-order functions.

Relaxed specifications Our current definition of completeness requires equality of results
for all functions satisfying a property set. FitSpec regards the results of an original unmu-
tated function as canonical; any other result computed by a mutant function is incorrect.
But the natural specification of some functions is more relaxed. For example, sometimes
the order of elements in a list is immaterial; in this case, the programmer could resolve the
issue by defining a newtype for which the equality test disregards order. Not all examples
are so simply resolved however: a function to find a shortest path between two nodes in a
digraph may return any one of several shortest paths. We might therefore investigate more
general ways to characterize equivalence of functional results, with respect to argument
values if necessary.

Availability
FitSpec is freely available with a BSD3-style license from either:
• https://hackage.haskell.org/package/fitspec

• https://github.com/rudymatela/fitspec
This chapter describes FitSpec as of version 0.3.1.

73

https://hackage.haskell.org/package/fitspec
https://github.com/rudymatela/fitspec

74

Chapter 5

Speculate: discovering conditional
equations and inequalities by testing

This chapter presents Speculate, a tool that automatically conjectures laws involving con-
ditional equations and inequalities about Haskell functions. Speculate enumerates expres-
sions involving a given collection of Haskell functions, testing to separate these expressions
into apparent equivalence classes. Expressions in the same equivalence class are used to
conjecture equations. Representative expressions of different equivalence classes are used
to conjecture conditional equations and inequalities. Speculate uses lightweight equational
reasoning based on term rewriting to discard redundant laws and to avoid needless testing.
Several applications demonstrate the effectiveness of Speculate.

This chapter is based on the paper about Speculate [Braquehais and Runciman, 2017b]
presented at the Haskell Symposium 2017.

5.1 Introduction

This chapter presents a tool called Speculate. Given a collection of Haskell functions
and values bound to monomorphic types, Speculate automatically conjectures a specifica-
tion containing equations and inequalities involving those functions. Both equations and
inequalities may be conditional. In these respects we extend previous work by other re-
searchers on discovering unconditional equations [Claessen et al., 2010, Smallbone et al.,
2017]. As Speculate is based on testing, its results are speculative.

Speculate enumerates expressions by combining free variables, functions and values
provided by the user (§5.3). It evaluates these expressions for automatically generated test
cases to partition the expressions into apparent equivalence classes. It conjectures equa-
tions between expressions in the same equivalence class. Then, it conjectures conditional
equations (⇒) and inequalities (≤) from representatives of different equivalence classes
(§5.4). Speculate uses lightweight equational reasoning based on term rewriting to discard
redundant equations and to avoid needless testing. Speculate is implemented in Haskell

75

5 Speculate: discovering conditional equations and inequalities by testing

and it is designed to find laws about Haskell functions.

Example 5.1 When provided with the integer values 0 and 1, the functions id and abs,
and the addition operator (+), Speculate first discovers and prints the following apparent
unconditional equations:

id x == x
x + 0 == x

abs (abs x) == abs x
x + y == y + x

abs (x + x) == abs x + abs x
abs (x + abs x) == x + abs x
abs (1 + abs x) == 1 + abs x

(x + y) + z == x + (y + z)

Similar equational laws are found by the existing tool QuickSpec [Claessen et al., 2010,
Smallbone et al., 2017]. But Speculate goes on to print the following apparent inequalities:

x <= abs x
0 <= abs x
x <= x + 1
x <= x + abs y
x <= abs (x + x)
x <= 1 + abs x
0 <= x + abs x

x + y <= x + abs y
abs (x + 1) <= 1 + abs x

Finally, it prints these apparent conditional laws:

x <= y ==> x <= abs y
abs x <= y ==> x <= y
abs x < y ==> x < y

x <= 0 ==> x <= abs y
abs x <= y ==> 0 <= y
abs x < y ==> 1 <= y

x == 1 ==> 1 == abs x
x < 0 ==> 1 <= abs x

y <= x ==> abs (x + abs y) == x + abs y
x <= 0 ==> x + abs x == 0

abs x <= y ==> abs (x + y) == x + y
abs y <= x ==> abs (x + y) == x + y

The total execution time for Speculate to generate all the above laws is about 3 seconds.
Speculate is implemented as a library, and the total application-specific source code re-
quired for this example is less than 10 lines (Figure 5.1). �

76

Definitions 5.2

Contributions The main contributions of this chapter are:

1. methods using automated black-box testing and equational reasoning to discover not
only apparent unconditional equations but also apparent conditional equations and
inequalities between functional expressions;

2. the design of the Speculate tool, which implements these methods in Haskell and for
Haskell functions;

3. a selection of small case-studies, investigating the effectiveness of Speculate.

Road-map The rest of this chapter is organized as follows:
• §5.2 defines expressions, expression size and a complexity ordering on expressions;

• §5.3 describes how to use Speculate;

• §5.4 describes how Speculate works internally;

• §5.5 presents example applications and results, including laws about functions on
directed graphs and axioms of regular expressions;

• §5.6 discusses related work;

• §5.7 draws conclusions and suggests future work.

5.2 Definitions

Now, we define a few terms used in the rest of the chapter.

Expressions and their sizes All expressions formed by Speculate have monomorphic
types. Expressions, and their sizes, are:

Constants constant data-value and function symbols of size 1, e.g.,
• 0 :: Int,

• ’a’ :: Char,

• (+) :: Int -> Int -> Int

Variables variable symbols, also of size 1, such as
• x :: Int,

• f :: Int -> Int;

Applications type-correct applications of functional expressions to one or more argument
expressions, including partial applications, such as

77

5 Speculate: discovering conditional equations and inequalities by testing

• id y :: Int of size 2,

• (1+) :: Int -> Int of size 2,

• 0 + x :: Int of size 3,

• x + (y + 0) :: Int of size 5.

• x + (id y + x) :: Int of size 6.
The size of an application is the number of constant and variable symbols it contains.

To avoid an explosive increase in the search-space, we do not include other forms of
Haskell expression such as lambda expressions or case expressions.

A complexity ordering on expressions When there is redundancy between laws,
Speculate has to decide which to keep and which to discard. As a general rule, it keeps
the simplest laws. It also presents final sets of laws in order of increasing complexity. An
expression e1 is strictly simpler than another expression e2, if the first of the following
conditions to distinguish between them is:

1. e1 is smaller in size than e2, e.g.: x + y < x + (y + z);

2. or, e1 has more distinct variables than e2, e.g.: x + y < x + x;

3. or, e1 has more variable occurrences than e2, e.g.: x + x < 1 + x;

4. or, e1 has fewer distinct constants than e2, e.g.: 1 + 1 < 0 + 1;

5. or, e1 precedes e2 lexicographically, e.g.: x + y < y + z.
A similar ordering is used in QuickSpec [Claessen et al., 2010, Smallbone et al., 2017].

5.3 How Speculate is Used

Speculate is used as a library (by “import Test.Speculate”). Unless they already exist,
instances of the Listable typeclass (§3.2) are declared for needed user-defined datatypes
(Step 1). Constant values and functions are gathered in an appropriately formulated list,
and passed to the speculate function (Step 2).

Step 1. Provide typeclass instances for used-defined types
Speculate needs to know how to enumerate values to test equality between expressions. So,
where necessary, we declare type-class instances for user-defined types. Speculate provides
instances for most standard Haskell types and a facility to derive instances for user-defined
algebraic data types using Template Haskell [Sheard and Jones, 2002]. For types without a
constraining data invariant, writing “deriveListable ’’<Type>” is enough to create the
necessary instances (§3.2).

Speculate needs access to reified information about typeclass instances for each user-
defined type. This information is provided on the instances field in the following form:

78

How Speculate is Used 5.3

import Test.Speculate

main :: IO ()
main = speculate args
{ constants =

[constant "+" ((+) :: Int -> Int -> Int)
, constant "id" (id :: Int -> Int)
, constant "abs" (abs :: Int -> Int)
, background
, constant "0" (0 :: Int)
, constant "1" (1 :: Int)
, constant "<=" ((<=) :: Int -> Int -> Bool)
, constant "<" ((<) :: Int -> Int -> Bool)
]

}

Figure 5.1: Full program applying Speculate to +, id and abs used to obtain the results
in example 5.1 from §5.1.

instances = [ins "x" (undefined :: <Type1>)
, ...
, ins "x" (undefined :: <TypeN>)]

Step 2. Call the speculate function Constant values and functions are gathered
in a record of type Speculate.Args and passed to the speculate function. Constants we
want to know laws about are included in an Args field, the constants list. Other constants
that appear in laws, but not as the primary subjects, are those occurring in the constants
list after the special constant background.

Example 5.1 (revisited) Figure 5.1 shows the program used to obtain the results in
§5.1. �

Speculate limits the size of expressions considered, and the number of test cases used.
By default it:

• considers expressions up to size 5;

• considers inequalities between expressions up to size 4;

• considers conditions up to size 4;

• tests candidate laws for up to 500 value assignments.

The speculate function allows variations of these default settings either by setting Args
fields or in command-line arguments.

79

5 Speculate: discovering conditional equations and inequalities by testing

Speculate
User

Constants
&

Functions

Equations

Inequalities

Conditional
Equations

Expression
Enumerator

Equation
Speculator

Inequality
Speculator

Conditional
Equation

Speculator

Expressions

Equational
Theory

Implications

Equivalence
Classes of

Expressions

Expression
Tester

(LeanCheck)

Figure 5.2: Diagram summarizing how Speculate works

5.4 How Speculate Works

In summary, Speculate works by enumerating expressions and evaluating test instances of
them. In order for that to work effectively, Speculate uses equational reasoning (§5.4.1).
Speculate determines, in the following order, apparent:

1. equations and equivalence classes of expressions (§5.4.2);

2. inequalities (§5.4.3);

3. conditional equations (§5.4.4).

Figure 5.2 summarizes how Speculate works. Later stages use by-products of earlier stages.

To encapsulate values of different types, Speculate uses the Data.Dynamic module [dat,
2017] provided with GHC [GHC Team, 1992–2017] and declares a type to encode Haskell
expressions.

80

How Speculate Works 5.4

5.4.1 Equational Reasoning based on Term Rewriting

Following QuickSpec [Smallbone et al., 2017], Speculate performs basic equational rea-
soning based on unfailing Knuth-Bendix Completion [Bachmair et al., 1989, Knuth and
Bendix, 1983]. The aims are to prune the search space avoiding needless testing, and to
filter redundant laws so that the output is more useful to the user.

Completion The Knuth-Bendix Completion procedure takes a set of equations and pro-
duces a confluent term rewriting system [Knuth and Bendix, 1983, Baader and Nipkow,
1999]: a set of rewrite rules that can be used to simplify, or normalize, expressions. To
check if two expressions are equal, we can check if their normal forms are the same. The
completion procedure has two problems: failure in the presence of unorientable equations
and possible non-termination. Speculate solves these problems in a similar way to Quick-
Spec as detailed in the following paragraphs.

Unorientable equations and bounded equivalence closure To deal with unorientable equa-
tions, we use the technique of unfailing completion [Bachmair et al., 1989] which allows
unorientable equations to be kept in a separate set from rules. Checking for equivalence
using normalization is still sound, but incomplete (the fact that two expressions are equiv-
alent may be undetected). We can use unorientable equations to improve the check for
equivalence between expressions e1 and e2: first normalize both e1 and e2; then take the
equivalence closure using the set of unorientable equations; finally, if one of the expressions
in the closure of e1 is equivalent to one of the expressions in the closure of e2 then they
are equivalent. To ensure termination, we impose a configurable bound on the number of
closure applications.

Non-termination and size limit To deal with non-termination of the completion proce-
dure, we impose a limit on the size of generated rules, discarding any rules where the
left-hand size is bigger than the maximum expression size we are exploring.

5.4.2 Equations and Equivalence Classes of Expressions

Speculate finds equations in a similar way to QuickSpec 2 [Smallbone et al., 2017]. As
QuickSpec 2 has many features, like support for polymorphism, use of external theorem
provers for reasoning, and several configuration options, we chose to reimplement a core
variant before extending it with support for conditional equations and inequalities. Differ-
ences to QuickSpec are highlighted in §5.6.

This section summarizes how Speculate finds equations.

State Speculate processes each expression in turn, transforming a state. Speculate keeps
track of:
• a theory (§5.4.1) based on equations discovered so far;

• a set of equivalence classes of all expressions considered so far, and for each of them
a smallest representative.

81

5 Speculate: discovering conditional equations and inequalities by testing

Table 5.1: Equivalence classes and equations after initialization by considering all expres-
sions of size 1.

equivalence classes

type repr. others
Int x —
Int 0 —
Int 1 —

Int -> Int id —
Int -> Int abs —

Int -> Int -> Int (+) —

equations

no equations

Table 5.2: Equivalence classes and equations after considering all expressions of size 2.
equivalence classes

type repr. others
Int x id x
Int 0 abs 0
Int 1 abs 1
Int abs x —

Int -> Int id —
Int -> Int abs —
Int -> Int (x+) —
Int -> Int (0+) —
Int -> Int (1+) —

Int -> Int -> Int (+) —

equations

id x == x
abs 0 == 0
abs 1 == 1

Considering an expression Speculate considers an expression E by trying to find an
equivalence-class representative R that is equivalent to E:
• If expression E is found equivalent to R using equational reasoning, then E is dis-
carded. The equations already tell us that E = R.

• If expression E is found equivalent to R using testing, then the new equation E = R
is inserted into the theory and E is inserted into R’s equivalence class.

Initialization The algorithm starts by considering single-symbol expressions in the sig-
nature and one free variable for each type. After this initialization, Speculate knows all
equivalence classes between expressions of size 1.

Example 5.1 (revisited) Table 5.1 shows the equivalence classes after initialization for
the example from §5.1 with 0, 1, id, abs and (+) in the signature. As yet there are no
equations. �

82

How Speculate Works 5.4

Table 5.3: Equivalence classes and equations after considering all expressions of size 3.
equivalence classes

type repr. others
Int x id x, x + 0
Int 0 abs 0
Int 1 abs 1
Int abs x abs (abs x)
Int x + x —
Int x + 1 1 + x
Int 1 + 1 —

Int -> Int id —
Int -> Int abs —
Int -> Int (x+) —
Int -> Int (0+) —
Int -> Int (1+) —
Int -> Int (abs x +) —

Int -> Int -> Int (+) —

equations

id x == x
abs 0 == 0
abs 1 == 1
x + 0 == x
0 + x == x
x + 1 == 1 + x

abs (abs x) == abs x

Generating and considering expressions Speculate generates expressions in size or-
der until the size limit is reached. Expressions are constructed from type-correct applica-
tions of equivalence-class representatives.

Example 5.1 (revisited) Using the size 1 representatives in Table 5.1, Speculate gen-
erates all candidate expressions of size 2: id x, id 0, id 1, abs x, abs 0, abs
1, (x+), (0+), (1+). Then, it considers all those expressions to arrive at the equations
and equivalence classes shown in Table 5.2.

The process of considering expressions is repeated with expressions of further sizes.
Table 5.3 shows equivalence classes after considering all expressions of size 3. �

Multiple variables The algorithm described so far is only able to discover laws involving
one distinct variable of each type. Following QuickSpec, dealing with multiple variables is
based on the following observation and its contrapositive:

Multi ⇒ Single For a several-variables-per-type equation to be true, its one-variable-per-
type instance should be true as well, for example:

∀x y z.(x+ y) + z = x+ (y + z)⇒ ∀x.(x+ x) + x = x+ (x+ x)

¬ Single ⇒ ¬ Multi If a one-variable-per-type equation is false, all its several-variable-
per-type generalizations are false as well, for example:

∃x.(x+ x) + x 6= x+ (x+ x)⇒ ∃x y z.(x+ y) + z 6= x+ (y + z)

83

5 Speculate: discovering conditional equations and inequalities by testing

So, we only test a multi-variable equation when its single variable instance is true.

Example 5.1 (revisited) When exploring expressions of size 5, Speculate finds that

(x + x) + x == x + (x + x)

then proceeds to test all its generalizations to find that

(x + y) + z == x + (y + z) �

Finding commutativity After processing expressions of size 3 we might expect to have
found commutativity of addition (+). However, it is not found by the algorithm just
described. To find commutativity and other similar laws involving rotation of variables,
we must also consider generalizations of a representative expression equated with itself.
For example, x + y == y + x is a generalization of x + x == x + x.

Expressions with several variables per type Speculate has to find classes of expres-
sions with several variables per type before searching for inequalities (§5.4.3) and condi-
tional equations (§5.4.4). For each representative expression with at most one variable per
type, Speculate considers its possible generalizations up to n variables, merging expressions
into the same equivalence class if either of the following is true:

1. they normalize to the same expression using the theory;

2. they test equal.

Summary So far, we have unconditional equations and equivalence classes of expres-
sions.

5.4.3 Inequalities between Class Representatives

A naïve approach To find inequalities (≤), a naïve approach enumerates all possible
expressions and computes all≤ relations by testing for the configured number of arguments.
But it blows up as the size limit increases.

Example 5.1 (revisited) With a limit of 7 symbols, we would have to check over a
quarter of a billion pairs of expressions (16492 × 16492, see Table 5.4). Using the default
number of tests, 500, we would perform over one hundred billion evaluations. Even if
we waited for that computation to complete, we would still have the problem of filtering
redundant laws.

A slightly less naïve approach If we instead insert True and <= in the background
signature, then generate equations, inequalities will appear in the output as:

(LHS <= RHS) == True

84

How Speculate Works 5.4

Table 5.4: How the number of expressions and classes for Example 5.1 increases with the
size limit.

max. 2 variables max. 3 variables
size limit #-exprs. #-classes #-exprs. #-classes

1 4 4 5 5
2 12 6 15 8
3 44 12 60 18
4 172 23 250 39
5 748 36 1180 68
6 3436 72 5840 153
7 16492 114 30285 287

In this way, no explicit support for inequalities is needed. For QuickSpec to discover the
law (x + y <= abs x + abs y) == True it is enough to set it to explore expressions up
to size 9. In about 28s, QuickSpec will print this law along with 125 other laws (see Table
5.9). The algorithm described in the rest of this section is faster, discovering an equivalent
law in about 1s among only 43 other laws. See §5.6 for further comparison with QuickSpec.

A better approach The actual method used in Speculate is based on two observations:
1. the number of non-functional equivalence classes is far smaller than the number of

expressions (see Table 5.4);

2. we already have all equivalence classes and their smallest representatives as a by-
product of finding unconditional equations.

So, based on the equivalence classes of expressions with several variables per type, Speculate
finds inequalities in three steps:

1. list all pairs of class representatives;

2. test to find pairs that are related by ≤;

3. discard redundant inequalities.

Example 5.1 (revisited) Here are the inequalities found by finding all pairs of expres-
sions related by ≤ before discarding redundant inequalities:

1. 0 <= 1 4. 0 <= abs x 7. y <= y + 1
2. x <= abs x 5. 0 <= abs y 8. 0 <= 1 + 1
3. y <= abs y 6. x <= x + 1 9. 1 <= 1 + 1

Examples of redundancy include: inequalities 2 and 3 are equivalent; inequalities 4 and 5
are equivalent; inequality 8 is implied by inequalities 1 and 9.

Discarding redundant inequalities. To discard redundant inequalities, Speculate uses
the complexity order defined in §5.2. This is done in three steps, described in the following

85

5 Speculate: discovering conditional equations and inequalities by testing

three paragraphs.

1. Instances Speculate discards more complex inequalities that are instances of simpler
inequalities.

Example 5.1 (revisited) The following 4 inequalities are discarded

3. y <= abs y (instance of 2. x <= abs x)
5. 0 <= abs y (instance of 4. 0 <= abs x)
7. y <= y + 1 (instance of 6. x <= x + 1)
9. 1 <= 1 + 1 (instance of 6. x <= x + 1)

to arrive at

1. 0 <= 1 6. x <= x + 1
2. x <= abs x 8. 0 <= 1 + 1
4. 0 <= abs x

2. Consequences of transitivity Speculate discards consequences of transitivity e1 ≤ e2 ∧
e2 ≤ e3 ⇒ e1 ≤ e3 when both antecedents (e1 ≤ e2 and e2 ≤ e3) are either simpler than
the consequence (e1 ≤ e3), or instances of inequalities simpler than the consequence.

Example 5.1 (revisited) The inequality 0 <= 1 + 1 is discarded as it is a conse-
quence of 0 <= 1 and x <= x + 1.

3. Instances modulo equivalence closure For all pairs of inequalities I1 and I2 where I1 is
simpler than I2, if any of the expressions in the bounded equivalence closure (§5.4.1) of I2
is an instance of any of the expressions in the bounded equivalence closure of I1, Speculate
discards I2.

5.4.4 Conditional Equations between Class Representatives

In this section, we detail how conditional equations are generated based on the equational
theory (§5.4.2), class representatives (§5.4.2) and inequalities (§5.4.3) between boolean
values.

A digraph of candidate conditions There is a connection between conditional laws
and inequalities. Using the standard definition of Boolean <= we could define:

(==>) = (<=)

We already have information about <= from the previous step (§5.4.3). We can build a
digraph of boolean expressions ordered by implication as shown in Figure 5.3. We include
False and True.

86

How Speculate Works 5.4

p

True

False

x < 0 1 < xabs x <= 0

x <= 0

1 <= abs x

1 <= x 1 < abs x

0 <= x

abs x <= 1

x <= 1

Figure 5.3: Conditions ordered by logical implication for Example 5.1 from §5.1 when
considering expressions of at most one distinct variable of each type.

False

p x < 0 abs x <= 0

x <= 0 abs x <= 1

x <= 1

⇒ p

x <= 0

x <= 1

abs x <= 1

⇓
x <= 0

Figure 5.4: Possible transformations performed on the ordering structure from Figure 5.3
when searching for the weakest condition for x + abs x == 0 to hold. Shaded square
nodes are those tested and found to be true.

87

5 Speculate: discovering conditional equations and inequalities by testing

Discovering conditional laws For each pair of representatives e1 and e2 from different
equivalence classes, we search for the weakest conditions under which e1 = e2 holds. Instead
of searching through all possible conditions from class representatives we use the digraph
of conditions to prune the search space. We make a fresh copy of the digraph and repeat
the following until there are no unmarked nodes:

1. pick an arbitrary unmarked node with condition c;

2. check c⇒ e1 = e2 by evaluating it for a set number of test cases;

3. if all tests pass then mark c as visited and remove all nodes from which c can be
reached as these are for stronger conditions than c.

4. if any test fails remove c and all nodes reachable from it as these are for weaker
conditions than c.

The remaining nodes are the weakest conditions for which e1 = e2. The algorithm is sound
modulo testing : assuming the results of testing are correct, the algorithm’s result is correct.

Example 5.1 (revisited) Suppose we are trying to find the weakest condition for which
x + abs x == 0 holds. We may start by considering 1 < x ==> x + abs x == 0 for
which tests fail: the node for 1 < x and all five nodes reachable from it are removed
from the graph, yielding the first graph in Figure 5.4. We may then consider x <= 0, for
which all tests succeed: we mark it as visited and remove three other nodes from which it
can be reached, yielding the second graph in Figure 5.4. Fast-forwarding to the end, we
are left with a single node: the condition x <= 0 is the weakest condition for x + abs
x == 0 to hold.

Discarding redundant conditional equations To discard redundant conditional equa-
tions, Speculate uses the two rules described in the following paragraphs.

Discarding consequences of other conditional equations We discard a conditional equation
c1 ⇒ e3 = e4 if we also have a conditional equation c0 ⇒ e1 = e2 with c1 = c0 or c1 ⇒ c0
according to the implication digraph; and, e3 is shown equivalent to e4 by replacing e1 with
e2 (or e2 with e1).

Discarding consequences of substitution We discard a conditional equation c ⇒ e1 = e2
if: the condition c or any other expression from its equivalence class is of the form e3 = e4;
and, after adding e3 = e4 to the theory, e1 is shown equivalent to e2.

Example 5.2 If the following conditional equation is discovered,

0 <= x ==> abs (x + 1) == x + 1

it is discarded. The expression abs x == x is in the same equivalence class as 0 <= x.
After adding abs x == x to the theory, abs (x + 1) can be shown equivalent to
x + 1.

88

Example Applications and Results 5.5

5.5 Example Applications and Results

In this section, we use Speculate:
• to find laws about simple functions on lists (§5.5.1);

• to find a complete implementation of insertion sort (§5.5.2);

• to find ordering properties of binary-tree functions (§5.5.3);

• to find ordering properties of digraph functions (§5.5.4);

• to find an almost complete axiomatisation for regular-expression equivalence (§5.5.5).
Then, in §5.5.6 we give a summary of performance results for all these applications. These
example applications are of increasing complexity.

We emphasize what is new compared with QuickSpec [Claessen et al., 2010, Smallbone
et al., 2017]. So we often omit details of reported unconditional equations where QuickSpec
produces similar results. In §5.6 we shall summarise differences with QuickSpec, including
some reasons why the tools may give slightly different sets of unconditional equations.

Sometimes, to avoid being repetitive, we discuss only a selection of inequalities and
conditional equations, but always note where others are also generated.

5.5.1 Finding properties of basic functions on lists

Given the value [], the operators (:) and (++), and the functions head and tail, all
with Int as element type, Speculate first reports the following equations:

xs ++ [] == xs
[] ++ xs == xs

(xs ++ ys) ++ zs == xs ++ (ys ++ zs)
(x:xs) ++ ys == x:(xs ++ ys)
head (x:xs) == x
tail (x:xs) == xs

Exactly the same laws are found by QuickSpec.

Lexicographic ordering But Speculate goes on to print the following inequalities, as-
suming the default lexicographical ordering Haskell derives for lists.

[] <= xs
xs <= xs ++ ys
xs <= head xs:tail xs

xs ++ ys <= xs ++ (ys ++ zs)

The law xs <= head xs:tail xs may seem strange, but it is correct, even when xs=[],
due to laziness.

89

5 Speculate: discovering conditional equations and inequalities by testing

Subsequence ordering Speculate allows the user to request inequalities based on or-
derings other than an Ord instance. For example, if we provide as an Args field (§5.3)

instances = [ordWith (isSubsequenceOf :: [Int]->[Int]->Bool)]

then Speculate uses isSubsequenceOf (from Data.List) as <= for lists of Ints and reports
the following inequalities:

[] <= xs
xs <= x:xs
xs <= xs ++ ys
xs <= ys ++ xs
xs <= tail (xs ++ xs)
[x] <= x:xs
xs <= head xs:tail xs

x:xs <= x:(y:xs)
xs ++ ys <= xs ++ (ys ++ zs)
xs ++ ys <= xs ++ (zs ++ ys)

x:xs <= x:(xs ++ ys)
x:xs <= x:(ys ++ xs)

xs ++ ys <= xs ++ (x:ys)
[x,y] <= x:(y:xs)

xs ++ [x] <= xs ++ (x:ys)

Automatically checking given orderings Before starting to compute conjectures,
Speculate checks by testing that the requested inequality ordering is reflexive and an-
tisymmetric with respect to (==), and transitive. If not, it refuses to go further. For
example, if we set (/=) as an ordering function for the type [Int], Speculate reports:

Error: (<=) :: [Int] -> [Int] -> Bool
is not an ordering (not reflexive,
not antisymmetric, not transitive)

5.5.2 Sorting and Inserting: deducing their implementation

With [] and (:) in the background signature, and functions insert and sort from
Data.List in the foreground, Speculate first reports 7 equations. QuickSpec produces a
different but similar set of 7 equations. Both QuickSpec and Speculate find the base case
of insert and the recursive case of insertion sort:

insert x [] == [x]
sort (x:xs) == insert x (sort xs)

By default, Speculate hides laws with no variables. If we switch on the option to reveal
them, Speculate also reports the base case for sort:

90

Example Applications and Results 5.5

sort [] == []

If we also include <= and < for the element type in the background, Speculate reports
the two conditional recursive cases

x <= y ==> insert x (y:xs) == x:(y:xs)
x < y ==> insert y (x:xs) == x:insert y xs

completing a full implementation of insertion sort synthesised from results of black-box
testing.

5.5.3 Binary search trees

In this section, we apply Speculate to functions on binary search trees, with the following
datatype.

data BT a = Null | Fork (BT a) a (BT a)

We declare two search trees equivalent if they contain the same elements. Also, tree a is
less than or equal to tree b if all elements of tree a are present in tree b.

instance (Eq a, Ord a) => Eq (BT a) where
(==) = (==) ‘on‘ toList

instance (Eq a, Ord a) => Ord (BT a) where
(<=) = isSubsequenceOf ‘on‘ toList

Equations If we apply Speculate to

insert :: Ord a => a -> BT a -> BT a
delete :: Ord a => a -> BT a -> BT a
isIn :: Ord a => a -> BT a -> Bool

it first reports 14 equations, including:

insert x (insert x t) == insert x t
delete x (delete x t) == delete x t
isIn x (insert x t) == True
isIn x (delete x t) == False

We find that insertion and deletion of an element x are idempotent, and that they appro-
priately determine the outcomes of subsequent membership tests.

Inequalities Speculate then reports 11 inequalities. The first three are:

Null <= t
t <= insert x t

delete x t <= t

91

5 Speculate: discovering conditional equations and inequalities by testing

That is: the least tree is an empty tree; inserting elements makes trees larger; deleting
elements makes trees smaller.

Another group of five inequalities are about combinations of some pair of the functions
insert, delete and isIn:

delete x t <= delete x (insert y t)
insert x (delete y t) <= insert x t
delete x (insert y t) <= insert y (delete x t)

isIn x t ==> isIn x (insert y t)
isIn x (delete y t) ==> isIn x t

Conditional equation Speculate also reports this conditional equation:

x /= y ==> insert y (delete x t) == delete x (insert y t)

Applied to distinct elements, insert and delete commute.

5.5.4 Digraphs

In this section, we apply Speculate to a directed-graph library based on the following
adjacency-list datatype

data Digraph a = D [(a,[a])]

where values of the parametric type a are identified with nodes of the digraph.
With elem and [] in the background, we apply Speculate to the following functions:

empty :: Digraph a
addNode :: Ord a => a -> Digraph a -> Digraph a
addEdge :: Ord a => a -> a -> Digraph a -> Digraph a
preds :: Ord a => a -> Digraph a -> [a]
succs :: Ord a => a -> Digraph a -> [a]
isNode :: Ord a => a -> Digraph a -> Bool
isEdge :: Ord a => a -> a -> Digraph a -> Bool
isPath :: Ord a => a -> a -> Digraph a -> Bool
subgraph :: Ord a => [a] -> Digraph a -> Digraph a

The subgraph ns function extracts the subgraph of its argument with nodes restricted
to those listed in ns.

We define an ordering on digraphs as follows.

instance Ord a => Ord (Digraph a) where
g1 <= g2 = all (‘elem‘ nodes g2) (nodes g1)

&& all (‘elem‘ edges g2) (edges g1)

The ordering relationship holds if all nodes and edges of g1 are also present in g2.

92

Example Applications and Results 5.5

Equations Speculate reports 15 equations. For example, they include these commuta-
tivity rules about addNode and subgraph:

addNode x (addNode y a) == addNode y (addNode x a)
subgraph xs (subgraph ys a) == subgraph ys (subgraph xs a)

Conditional Equations Speculate reports two conditional equations:

elem x xs ==> subgraph xs (addNode x a) == addNode x (subgraph xs a)
isEdge x y a ==> addEdge x y a == a

Indeed, addNode x and subgraph xs commute when x is an element of xs. Less
excitingly, adding an edge to a graph that has it has no effect.

Inequalities Speculate reports a dozen inequalities. These five are general laws about
the relative extent of graphs.

empty <= a
a <= addNode x a

subgraph xs a <= a
a <= addEdge x y a

addNode x a <= addEdge x y a

Other inequalities involve empty or give simple rules about isNode, isEdge and isPath.
They are all correct, but we omit them to avoid being repetitive.

5.5.5 Regular Expressions

In this section, we use Speculate to conjecture properties about regular expressions (see
Table 5.5). It took mathematicians many years to come up with these axiomatizations,
it would be quite an achievement if Speculate could generate these automatically. As we
shall see, this is a much more demanding example. We shall reach the limits of what we
can do with Speculate.

We declare the following datatype RE a with a parametric type a for the alphabet.

data RE a = Empty
| None
| Lit a
| Star (RE a)
| RE a :+ RE a
| RE a :. RE a

We declare the Listable instance

93

5 Speculate: discovering conditional equations and inequalities by testing

Table 5.5: Regular expression axioms, the size of the largest side (LHS/RHS) and whether
each is found by Speculate.

Basic / Common Axioms size found
1. Identity (+) E + ∅ ≡ E 3 yes
2. Idempotence (+) E + E ≡ E 3 yes
3. Commutativity (+) E + F ≡ F + E 3 yes
4. Associativity (+) E + (F +G) ≡ (E + F) +G 5 yes
5. Null (.) E∅ ≡ ∅E ≡ ∅ 3 yes
6. Identity (.) Eε ≡ εE ≡ E 3 yes
7. Left distributivity E(F +G) ≡ EF + EG 7 yes
8. Right distributivity (E + F)G ≡ EG+ FG 7 yes
9. Associativity (.) E(FG) ≡ (EF)G 5 yes

Salomaa (1966) Axioms [Salomaa, 1966]
S10. Left expansion (∗) E∗ ≡ ε+ E∗E 6 entailed
S11. Inner expansion (∗) E∗ ≡ (ε+ E)∗ 4 yes
S12. Inference (ewp) E ≡ EF +G ⇒ E ≡ GF ∗ if ¬ewp(F) 10 no

Conway (1971) Axioms [Conway, 1971]
C10. Elimination (+∗) (E + F)∗ ≡ (E∗F)∗E∗ 8 no
C11. Elimination (.∗) (EF)∗ ≡ ε+ E(FE)∗F 10 no
C12. Idempotence (∗∗) (E∗)∗ ≡ E∗ 3 yes
C13. Expansion (∗) E∗ ≡ (En)∗E<n (n > 0) — no

Kozen (1994) Axioms [Kozen, 1994]
K10. Left expansion (∗) ε+ EE∗ ≡ E∗ 6 yes
K11. Right expansion (∗) ε+ E∗E ≡ E∗ 6 entailed
K12. Left inequality F + EG ≤ G ⇒ E∗F ≤ G 7 restricted
K13. Right inequality F +GE ≤ G ⇒ FE∗≤G 7 restricted

instance Listable a => Listable (RE a) where
tiers = cons0 Empty

\/ cons0 None ‘ofWeight‘ 1
\/ cons1 Lit \/ cons1 Star
\/ cons2 (:+) \/ cons2 (:.)

We declare a three-symbol alphabet, also with a Listable instance:

newtype Symbol = Symbol Char deriving (Eq, Ord, Show)

instance Listable Symbol where
tiers = cons0 (Symbol ’a’)

\/ cons0 (Symbol ’b’) ‘ofWeight‘ 1
\/ cons0 (Symbol ’c’) ‘ofWeight‘ 2

94

Example Applications and Results 5.5

The ofWeight applications make these constructions appear less frequently in the test
value enumeration.

Testing equivalence by matching We wish to define equivalence of REs by equality
of string-matching outcomes. To do so, we define a function to translate the RE represen-
tation into the string format used by an existing library for matching: Text.Regex.TDFA
from the regex-tdfa package.

translate :: (a -> Char) -> RE a -> String

So, for example:

> translate id (Lit ’a’ :+ Star (Lit ’b’ :. Lit ’c’))
"^(a|(bc)*)$"

The library exports (=˜) where s =˜ e if s matches e. Using translate and =˜, we
define:

match :: (a -> Char) -> [a] -> RE a -> Bool
match f xs r = map f xs =~ translate f r

So, for example:

> match id "aa" (Star (Lit ’a’) :. Lit ’b’)
False
> match id "aa" (Star (Lit ’a’) :. Star (Lit ’b’))
True

With match defined, we can now implement approximate equivalence and ordering of
regular expressions based on a limited number of membership tests:

testMatches :: (Listable a, Show a, Charable a, Ord a) => RE a -> [Bool]
testMatches = map (\e -> match toChar e r) $ take 120 list

(/==/), (/<=/) :: RE Symbol -> RE Symbol -> Bool
r /==/ s = testMatches r == testMatches s
r /<=/ s = and $ zipWith (<=) (testMatches r) (testMatches s)

Failing first attempts In our first attempts using this approach, execution times were
excessive. Even after caching up to ten million textMatches results, a 30-minute run
produced some wrong equations due to insufficient testing! Our solution was down-sizing.

Starting small We reconfigure Speculate to produce equations only up to size 3. After
a couple of minutes, it prints:

1. r :+ r == r
2. Star (Star r) == Star r
3. r :+ None == r

95

5 Speculate: discovering conditional equations and inequalities by testing

4. r :. Empty == r
5. r :. None == None
6. Empty :. r == r
7. None :. r == None
8. r :+ s == s :+ r

All these are sensible and correct laws about regular expressions. So now we declare
canonicalRE as follows:
canonicalRE :: (Eq a, Ord a) => RE a -> Bool
canonicalRE (r :+ s) | r >= s = False -- by 1&8
canonicalRE (Star (Star r)) = False -- by 2
canonicalRE (r :+ None) = False -- by 3
canonicalRE (None :+ r) = False -- by 3&8
canonicalRE (r :. Empty) = False -- by 4
canonicalRE (r :. None) = False -- by 5
canonicalRE (Empty :. r) = False -- by 6
canonicalRE (None :. r) = False -- by 7
canonicalRE _ = True

and use it to refine our Listable instance by adding ‘suchThat‘ canonicalRE.

Equations of size 4 With the updated Listable instance, Speculate considers a greater
range of candidate equations with the same number of tests. So, we can reduce the number
of tests to 400 for a speedup. Configured to produce equations up to size 4, it prints the
following new laws:

r :+ Star r == Star r
Star r :. r == r :. Star r

Star (r :+ Empty) == Star r
Empty :+ Star r == Star r

Now we repeat the process, further refining canonicalRE, and so the Listable instance,
on the basis of these conjectured laws.

Equations of size 5 and 6 We reduce the number of tests to 200 and again repeat the
process for sizes 5 and 6. Speculate prints seven equations of size 5 and nine of size 6 —
including axioms 5, 9 and K10 from Table 5.5. Axioms S10 and K11 are not discovered
directly, but are entailed by E∗E ≡ EE∗ and K10.

Inequalities and equations of size 7 Configured to explore equations and inequalities
of size 7, Speculate finds the distributive laws 7 and 8 from Table 5.5. At last, Speculate
finds all the common laws from all three axiomatisations of regular expressions. It also
finds the following restricted cases of Kozen’s conditional inequalities (Table 5.5: K12 and
K13), crucial ingredients in his complete axiomatisation:

96

Example Applications and Results 5.5

Table 5.6: Summary of performance results: figures are mean values across all runs; size
limit = maximum expression size; #-tests = maximum number of test-cases for any prop-
erty; time = rounded elapsed time and space = peak memory residency;

size limit for max. #- resources #-reported
Example eqs./ineqs./c.eqs. vars tests time space eqs./ineqs./c.eqs.

+ and abs 5 4 4 2 500 3s 7MB 23 17 4
(§5.1) 5 5 5 2 500 25s 7MB 23 44 4

6 5 5 3 500 2m 37s 8MB 43 44 24

List 5 4 – 3 500 < 1s 7MB 6 6 –
(§5.5.1) 7 6 – 3 500 31s 9MB 7 30 –

Insert Sort 5 – 3 2 500 < 1s 7MB 11 – 2
(§5.5.2) 6 – 5 3 500 5s 8MB 16 – 8

7 – 6 3 500 1m 27s 12MB 12 – 12

Bin. Trees 5 4 4 2 500 < 1s 7MB 16 4 1
(§5.5.3) 6 5 5 3 500 14s 7MB 16 22 5

Digraphs 5 4 4 2 500 1s 8MB 15 12 2
(§5.5.4) 6 5 5 3 500 1m 52s 10MB 27 30 34

6 5 5 3 6000 2m 22s 23MB 25 30 17

Regexes 3 – – – 500 1m 30s < 6GB 8 – –
(§5.5.5) 4 – – – 400 9m 11s < 6GB 12 – –

5 – – – 200 17m 13s < 6GB 19 – –
6 – – – 200 1h 26m 32s 6GB 28 – –
6 6 – 2 200 3h 43m 14s 6GB 61 377 –
6 6 – 3 200 19h 32m 14s 6GB 61 351 –
7 7 – 2 200 2d 22h 30m 10s 6GB 130 699 –

r :+ (s :. s) <= s ==> r :. Star s <= s
r :+ (s :. s) <= s ==> s :. (r :+ s) <= s

Summary This case study was “a stretch”. We wanted to see how far we could get with
Speculate. With patience, we can get very close to a complete axiom system, but with the
current version of Speculate it is just out of reach.

5.5.6 Performance Summary

Performance results are summarized in Table 5.6. Leaving aside the regular-expression
application, Speculates takes up to a few seconds to consider expressions for up to size 5.
Our tool and examples were compiled using ghc -O2 (version 8.0.1) under Linux. The
platform was a PC with a 2.2Ghz 4-core processor and 8GB of RAM.

97

5 Speculate: discovering conditional equations and inequalities by testing

5.6 Comparison with Related Work

QuickSpec The QuickSpec tool [Claessen et al., 2010, Smallbone et al., 2017, Smallbone,
2013, 2011] discovers equational specifications automatically (§2.2.1). Our technique is an
extension that allows production of conditional equations and inequalities. QuickSpec
inspired us to start working on Speculate. Table 5.7 shows a summary of differences
between QuickSpec 1, QuickSpec 2 and Speculate.

Table 5.7: Speculate contrasted with QuickSpec 1 and QuickSpec 2.
QuickSpec 1 QuickSpec 2 Speculate

Testing Strategy random random enumerative
(QuickCheck) (QuickCheck) (LeanCheck)

Direct discovery of equations yes yes yes
of inequalities no no yes
of conditional equations no restricted yes

Reported equations as discovered as discovered after completion
Constant laws (laws with no variables) yes yes hidden by default

How search is bounded depth-bounded size-bounded size-bounded

Explicit polymorphic functions no yes no
Pruning by external theorem provers no yes no

Performance (see Table 5.8) slowest fastest median

In principle QuickSpec can generate conditional equations, but only with conditions
restricted to applications of a set of declared predicates. Consider the following example
from [Smallbone et al., 2017]. When asked to generate laws about zip and (++), both
QuickSpec and Speculate produce the following equations:

zip xs (xs ++ ys) == zip xs xs
zip (xs ++ ys) xs == zip xs xs

These laws are valid but they have conditional generalizations:

length xs == length ys ==> zip xs (ys ++ zs) == zip xs ys
length xs == length ys ==> zip (xs ++ zs) ys == zip xs ys

In Speculate, it is enough to have (==) and length among the background constants to
obtain the more general laws.

QuickSpec can only discover these more general laws given quite explicit directions. By
providing length in the background and setting the following in QuickSpec’s predicates
field

predicates = [predicate (undefined :: Proxy "eqLen") eqLen]
where eqLen :: [Int] -> [Int] -> Bool

eqLen xs ys = length xs == length ys

98

Comparison with Related Work 5.6

Table 5.8: Timings and equation counts when generating unconditional equations using
Speculate, QuickSpec 1 and QuickSpec 2. In QS1, expressions are primarily explored up
to a certain depth [Claessen et al., 2010], so, for a fair comparison, we have introduced a
depth limit in QS2 and Speculate.

size depth max. Runtime in seconds #-reported equations
Example limit limit #-tests QS1 QS2 Spclt. QS1 QS2 Spclt.

(+) and abs (§5.1) 6 4 500 4s < 1s < 1s 10 13 9
7 4 500 7s < 1s 2s 14 15 14

0, 1, +, × (Int) 7 4 500 95s 3s 6s 9 13 9

List (§5.5.1) 7 4 500 52s < 1s < 1s 28 7 7
8 4 500 10m 31s < 1s < 1s 40 7 7

QuickSpec is able to find the more general laws in the form:

eqLen xs ys ==> zip xs (ys ++ zs) == zip xs ys
eqLen xs ys ==> zip (xs ++ zs) ys == zip xs ys

With regards to how laws are reported, we made a different design choice to Quick-
Spec. QuickSpec reports laws as soon as they are discovered, so the user sees progress as
QuickSpec runs. Speculate only reports laws after running the completion procedure, so
later laws can be used to discard earlier ones. Speculate also, by default, does not report
variable-free laws like sort [] == [].

QuickSpec has support for polymorphism: if an equation is discovered for a polymorphic
version of a function it can be used as a pruning rule for all its monomorphic instances.
Speculate does not yet support that polymorphism; it requires monomorphic instances.

To double-check Speculate’s reimplementation of the basic equation generating machin-
ery in QuickSpec: (1) we compared Speculate output with QuickSpec output to check if
there was any missing equation, and (2) we compared performance of the two tools. This
comparison is summarized in Table 5.8. QuickSpec 2 is a little bit faster than Speculate —
profiling indicates that we were not as smart as the QuickSpec authors when implementing
our term rewriting and completion engine.

Table 5.9 presents needed size limits and times to generate some inequalities and con-
ditional laws for QuickSpec 2 and Speculate. Results in Tables 5.8 and 5.9 are based on
QuickSpec 1 version 0.9.6 and on QuickSpec 2 development version from 11 May 2017 with
git commit hash 3c6e010. At the time of writing, developers are working on improving
support for conditional laws in QuickSpec.

CoCo The CoCo (Concurrency Commentator) tool [Walker and Runciman, 2017] gen-
erates specifications for concurrent Haskell programs containing laws about refinement or
equivalence of side effects. Drawing upon the techniques used in QuickSpec and Spec-
ulate, CoCo also works by testing, and can be seen as QuickSpec/Speculate to discover
equivalences and refinements between concurrent expressions.

99

5 Speculate: discovering conditional equations and inequalities by testing

Table 5.9: Needed size limits and times to generate some inequalities and conditional laws
for QuickSpec 2 and Speculate. Speculate is able to find some laws much faster as they
appear when exploring expressions of smaller size.

Needed Needed # found
size limit max #-ts. Runtime laws

Example & Law QS2 Spl. QS2 Spl. QS2 Spl. QS2 Spl.

(+) and abs (§5.1)
x <= abs x 4 2 500 500 <1s <1s 12 3
x <= abs (x + x) 6 4 500 500 <1s <1s 36 23
x + y <= x + abs y 8 4 500 500 8s <1s 82 23
x + y <= abs x + abs y 9 5 500 500 34s 1s 125 43
(or x + y <= abs x + y)

Binary Trees (§5.5.3)
isIn x t ==> isIn x (insert y t) 9 5 2000 500 37s 1s 34 39

Regexes (§5.5.5)
F +GE ≤ G⇒ E∗F ≤ G 14 7 (o p e n r e s e a r c h p r o b l e m)

HipSpec QuickSpec and Speculate can only provide apparent laws as their results are
based on testing. The HipSpec system [Claessen et al., 2012] automatically derives and
proves properties about functional programs. HipSpec first uses QuickSpec to discover
conjectures to prove. Then, using inductive theorem proving, it automatically generates
a set of equational theorems about recursive functions. Those theorems can be used as a
background theory for proving properties about a program.

Hipster The Hipster system [Johansson et al., 2014] integrates QuickSpec with the proof
assistant Isabelle/HOL. Hipster speeds up and facilitates the development of new theories
in Isabelle/HOL by using HipSpec to discover basic lemmas automatically.

Daikon The Daikon tool [Ernst et al., 2007] automatically discovers apparent invariants
in imperative programs. Those invariants include: preconditions and postconditions of
statements, equational relationships between variables at a given program point and equa-
tions between functions from a library. Unlike QuickSpec and Speculate, Daikon is aimed
at imperative programs, written in languages such as: C, C++, Java and Perl. Daikon
works by testing potential invariants against observed runtime values.

FitSpec The FitSpec tool (Chapter 4) provides automated assistance in the task of
refining specifications. It has been applied to QuickSpec results and could also be applied
to Speculate results.

100

Conclusions and Future Work 5.7

5.7 Conclusions and Future Work

Conclusions In summary, we have presented a tool that, given a collection of Haskell
functions, conjectures a specification involving apparent inequalities and conditional equa-
tions. This specification can contribute to understanding, documentation and properties
for regression tests. As set out in §5.3 and §5.4, Speculate enumerates, tests expressions
and reasons from test results to produce its conjectures. We have demonstrated in §5.5
Speculate’s applicability to a range of small examples, and we have briefly compared in
§5.6 some of the results obtained with related results from other tools.

Value of reported laws The conjectured equations and inequalities reported by Speculate
are surprisingly accurate in practice, despite their inherent uncertainty in principle. These
conjectures provide helpful insights into the behaviour of functions. For the sorting example
in §5.5.2, we were even able to synthesise a complete implementation. When Speculate
finds an apparent but incorrect law, increasing the number of tests per law is often a
simple and effective remedy (§5.5.4). The special treatment of inequalities and conditional
equations makes possible the generation of laws previously unreachable by a tool such as
QuickSpec [Claessen et al., 2010, Smallbone et al., 2017].

Ease of use Arguably, a tool is easier to use if it requires less work from the programmer.
As we illustrated in §5.3, writing a minimal program to apply Speculate takes only a
few lines of code. The speculate function parses command-line arguments to allow easy
configuration of test parameters. If only standard Haskell datatypes are involved, no extra
Listable instances are needed. If user-defined data types can be freely enumerated without
a constraining data invariant, instances can be automatically derived.

FutureWork We note a few avenues for further investigation that could lead to improved
versions of Speculate or similar tools.

Improve performance when generating inequalities The algorithm to generate equations is
partly based on the observation that, for an equation to be true, its one-variable-per-type
instance must be true. So, Speculate initially considers one-variable-per-type equations,
generalizing them to their several-variable versions only if they are found true (§5.4.2).
The same applies to inequalities, e.g., for

x + y <= x + abs y

to be true

x + x <= x + abs x

must be true. Speculate does not yet exploit this and does some unnecessary testing.
In addition, Speculate computes all <= relations between class representatives. Future

versions of Speculate, could explore the transitivity properties of <= to avoid some testing.

101

5 Speculate: discovering conditional equations and inequalities by testing

Parallelism As a way to improve performance, particularly when dealing with costly test
functions such as in the regular expressions example (§5.5.5), we could parallelise parts of
Speculate. For example, divide the testing of laws among multiple processors.

Automated generation of efficient Listable instances Right now, to use Speculate, Listable
instances have to be explicitly declared. Speculate could take the constructors of a type
in its constants list (§5.3) and automatically construct a generator for values of that type.
This generator could be improved as new equations are discovered. If for a given type
constructor Cons, we discover that Cons x y == Cons y x, in further tests, we would
only apply Cons to ordered x and y. This is what we did manually in our regular-expressions
example (§5.5.5).

Improve filtering of redundant inequalities and conditions Although Speculate already
filters out a lot of redundant inequalities and conditional equations, there is still room for
improvement. Recall these laws from Example 5.1:

1. x == 1 ==> 1 == abs x
2. abs x <= y ==> abs (x + y) == x + y
3. abs y <= x ==> abs (x + y) == x + y

By interpreting the condition as a variable assignment, the first law is an instance of 1 ==
abs 1. The other two laws are equivalent by the commutativity of addition (+).

Special treatment of conjunctions and disjunctions Although not explored much in the
examples in this chapter, conjunctions (&&) and disjunctions (||) can often occur as con-
ditions of properties [Runciman et al., 2008]. In the current version of Speculate, logical
operators are treated as regular functions. In future versions we could treat them specially,
exploiting their properties of commutativity and associativity to reduce the search space.

Checking that given equivalences are congruences In §5.5.1, we mention that before run-
ning any tests, Speculate checks whether given equality (==) functions are equivalences
(reflexive, symmetric and transitive). Speculate also assumes, but does not check, that
given == functions are congruences: in any expression e, suppose we replace a subexpres-
sion s by s′, where s ≡ s′, to obtain e′ as the whole: then we require e ≡ e′. Future versions
of Speculate should check for congruence.

Detecting and using equivalences and orderings In the current version of Speculate, the
user has to say which equivalence (==) and ordering (<=) functions to use. Or, in the
case of standard types, the user has to explicit provide functions to override the standard
ones. The algorithm to compute equations can work with any function that is a congruent
equivalence. Similarly, the algorithm to compute inequalities, can work with any function
that is an ordering. Speculate could detect any given functions that have these properties
and autonomously search for laws based on them.

102

Conclusions and Future Work 5.7

Availability
Speculate is freely available with a BSD3-style license from either:
• https://hackage.haskell.org/package/speculate

• https://github.com/rudymatela/speculate
This chapter describes Speculate as of version 0.2.9.

103

https://hackage.haskell.org/package/speculate
https://github.com/rudymatela/speculate

104

Chapter 6

Extrapolate: generalizing
counterexamples of test properties

This chapter presents a new tool called Extrapolate that automatically generalizes coun-
terexamples found by property-based testing in Haskell. Example applications show that
generalized counterexamples can inform the programmer more fully and more immediately
what characterises failures. Extrapolate is able to produce more general results than sim-
ilar tools. Although it is intrinsically unsound, as reported generalizations are based on
testing, it works well in practice.

This chapter is based on the paper about Extrapolate [Braquehais and Runciman, 2017a]
presented at IFL 2017.

6.1 Introduction

Most programmers are familiar with the following situation: a failing test case has been
discovered during testing; but it is not immediately apparent what more general class of
tests would trigger the same failure. The programmer may resort to painstaking step-by-
step reevaluation of the reported failure in the hope of realizing where a fault lies. In this
chapter, we examine a less explored approach: the generalization of failing cases informs
the programmer more fully and more immediately what characterises such failures. This
information helps the programmer to locate more confidently and more rapidly the causes
of failure in their program. We present Extrapolate, a tool to generalize counterexamples
of test properties in Haskell. Several example applications demonstrate the effectiveness
of Extrapolate.

105

6 Extrapolate: generalizing counterexamples of test properties

Example 6.1 Consider once again our running example of the faulty sort function from
Chapter 1:

sort :: Ord a => [a] -> [a]
sort [] = []
sort (x:xs) = sort (filter (< x) xs)

++ [x]
++ sort (filter (> x) xs)

Again, the function sort should have the following properties

prop_sortOrdered :: Ord a => [a] -> Bool
prop_sortOrdered xs = ordered (sort xs)

prop_sortCount :: Ord a => a -> [a] -> Bool
prop_sortCount x xs = count x (sort xs) == count x xs

that together completely specify sort.
If we pass both properties to an established property-testing library, such as QuickCheck

[Claessen and Hughes, 2000] or SmallCheck [Runciman et al., 2008], we get something like:

> check (prop_sortOrdered :: [Int] -> Bool)
+++ OK, passed 360 tests.

> check (prop_sortCount :: Int -> [Int] -> Bool)
*** Failed! Falsifiable (after 4 tests):
0 [0,0]

That is, prop_sortCount 0 [0,0] = False. If instead we test using Extrapolate, then
for the failing property, in addition to a specific counterexample, Extrapolate goes on to
print:

Generalization:
x (x:x:_)

Some values have been generalized: the specific value 0 does not matter, prop_sortCount
x (x:x:_) = False for any integer x; the tail value _ does not affect the result.

Extrapolate also prints:

Conditional Generalization:
x (x:xs) when elem x xs

This hints that our faulty sort function fails for lists that have repeated elements. We
shall return to this example in §6.4.1. �

106

How Extrapolate is Used 6.2

Contributions The main contributions of this chapter are:
1. methods using automated black-box testing to generalize counterexamples of func-

tional test properties by replacing constructors with variables, where these variables
may be repeated or subject to side-conditions;

2. the design of the Extrapolate library, which implements these methods in Haskell
and for Haskell test properties;

3. a selection of small case-studies, investigating the effectiveness of Extrapolate;

4. a comparative evaluation of generalizations performed by Extrapolate and similar
tools for Haskell.

Despite the Haskell setting of the implementation and experiments, we expect similar
techniques to be readily applicable in other functional programming languages.

Road-map This chapter is organized as follows:
• §6.2 describes how to use Extrapolate;

• §6.3 describes how Extrapolate works internally;

• §6.4 presents example applications and results;

• §6.5 discusses related work;

• §6.6 draws conclusions and suggests future work.

6.2 How Extrapolate is Used

Extrapolate is a library: modules using it include “import Test.Extrapolate”. Unless
they already exist, instances of the Listable (§6.3.1) and Generalizable (§6.3.2) type-
classes are declared for needed user-defined datatypes (step 1). The check function is then
applied to each test property (step 2).

Step 1. Provide class instances for used-defined types Extrapolate needs to know
how to generate test values for property arguments — this capability is provided by in-
stances of the Listable typeclass (§3.2). Extrapolate also needs to manipulate the struc-
ture of test values so that it can perform its generalization procedure — this capability
is provided by instances of the Generalizable typeclass (§6.3.2). Extrapolate provides
instances for most standard Haskell types and a facility to derive instances for user-defined
data types using Template Haskell [Sheard and Jones, 2002]. For datatypes without con-
straining data invariants, writing

deriveGeneralizable ’’<Type>

is enough to create the necessary instances. Extrapolate’s online documentation provides
details on how to define these instances manually.

107

6 Extrapolate: generalizing counterexamples of test properties

import Test.Extrapolate

sort :: Ord a => [a] -> [a]
sort [] = []
sort (x:xs) = sort (filter (< x) xs)

++ [x]
++ sort (filter (> x) xs)

prop_sortOrdered :: [Int] -> Bool
prop_sortOrdered xs = ordered (sort xs)
where
ordered (x:y:xs) = x <= y && ordered (y:xs)
ordered _ = True

prop_sortCount :: Int -> [Int] -> Bool
prop_sortCount x xs = count x (sort xs) == count x xs
where
count x = length . filter (== x)

main :: IO ()
main = do
check prop_sortOrdered
check prop_sortCount

Figure 6.1: Full program applying Extrapolate to properties of sort

Step 2. Call the check function The function check tests properties, and, if coun-
terexamples are found, it generalizes and reports these counterexamples.

Example 6.1 (revisited) Figure 6.1 shows the program applying Extrapolate to prop-
erties of sort used to obtain the results in §6.1. �

When exploring conditional generalizations, Extrapolate limits conditions by size. Size
is defined as the number of symbols in an expression added to the sizes of constants as
defined by LeanCheck’s Listable enumeration (§6.3.1). This definition is similar to the
one used in Speculate (Chapter 5). By default, Extrapolate:
• tests properties for up to 500 value assignments;

• considers side conditions up to size 4;

• uses Speculate to find equivalences between expressions of up to size 4 to avoid testing
equivalent conditions (§6.3.3).

Extrapolate allows variations of these default settings. The number of configured tests
affects the runtime linearly so long as the underlying Listable enumeration has linear
runtime as well. The size limit of side conditions affects runtime exponentially so it should
be adjusted with caution.

108

How Extrapolate Works 6.3

6.3 How Extrapolate Works

Extrapolate works in three steps:
1. it tests properties searching for counterexamples, and if any is found, steps 2 and 3

are performed (§6.3.1);

2. it tries to generalize counterexamples by substituting variables for constants (§6.3.2);

3. it tries to generalize counterexamples by introducing variables subject to side condi-
tions (§6.3.3).

Throughout this section we shall use the following example to illustrate how each step of
Extrapolate works.

Example 6.2 In Haskell, the Data.List module declares the function nub, that removes
duplicate elements from a list, keeping only their first occurrences. Consider the following
incorrect property about nub:

prop_nubid :: [Int] -> Bool
prop_nubid xs = nub xs == xs

When Extrapolate’s check function is applied to the above property, it produces the fol-
lowing output:

> check prop_nubid
*** Failed! Falsifiable (after 3 tests):
[0,0]

Generalization:
x:x:_

Conditional Generalization:
x:xs when elem x xs

Coincidentally, the result for this example is similar to the result we saw in §6.1 — but it
is simpler. �

6.3.1 Searching for counterexamples

To test properties searching for counterexamples, Extrapolate uses LeanCheck (Chapter 3)
which defines the Listable typeclass used to generate test values enumeratively.

Example 6.2 (1st revisit). When Extrapolate’s check function is applied to prop_nubid,
it is tested for each of the list arguments: [], [0], [0,0]. The property fails for the third
list [0,0] and Extrapolate produces its first two lines of output:

*** Failed! Falsifiable (after 3 tests):
[0,0] �

109

6 Extrapolate: generalizing counterexamples of test properties

6.3.2 Unconditional generalization

Listing generalizations After finding a counterexample, Extrapolate lazily lists all of
its possible generalizations, from most general to least general, formed by replacing one or
more subexpressions with variables. Generality order is not total as some generalizations
are incomparable. So we consider candidate replacements left-to-right.

Example 6.2 (2nd revisit). Recall the counterexample to prop_nubid: [0,0], or, more
verbosely, 0:0:[]. Its generalizations from most general to least general are: xs, x:xs,
x:y:xs, x:x:xs, x:y:[], x:x:[], x:0:xs, x:0:[], 0:xs, 0:x:xs, 0:x:[] and
0:0:xs. �

Testing generalizations For each of these generalizations, Extrapolate tests for a con-
figured number of value assignments whether the property always fails. It reports the
first generalization for which this test succeeds. Although this process is unsound, as it is
based on testing, it works well in practice (§6.4). Any variables that appear only once in
generalized counterexamples are reported as “_”.

Example 6.2 (3rd revisit). The first three generalizations are not counterexamples as
there are possible assignments of values for which the property returns True:
• xs — prop_nubid [] = True

• x:xs — prop_nubid (0:[]) = True

• x:y:xs — prop_nubid (0:1:[]) = True
The fourth generalization x:x:xs is tested and the property fails for all tested assignments
of values to the variables x and xs. So, Extrapolate produces its third and fourth lines of
output:

Generalization:
x:x:_

Since the variable xs appears only once in the generalized counterexample, it is reported
as “_”. �

6.3.3 Conditional generalization

Background functions Before trying to discover conditional generalizations we must
first decide which background functions are allowed to appear in conditions.

The larger the number of functions in the background, the longer Extrapolate will take
to produce a conditional generalization. So, we refrain from including a large set such as
the entire Haskell Prelude. If the algorithm used is ever refined to something faster we
may be able to include a larger set by default (§6.6).

Each type has a default list of functions to be considered, declared as part of their
Generalizable typeclass instance:
• for Ints, the functions (==), (/=), (<=), (<);

110

How Extrapolate Works 6.3

• for Chars, the functions (==), (/=), (<=), (<);

• for Bools, the functions (==), (/=), not;

• for lists, the functions (==), (/=), (<=), (<), length and elem;

• for Maybes, the functions (==), (/=), (<=), (<), Just;

• for Eithers, the functions (==), (/=), (<=), (<), Left, Right;

• for tuples, the functions (==), (/=), (<=), (<).
For user-defined datatypes, the implementor of instances of the Generalizable typeclass
decides which functions to include in the background. When using deriveGeneralizable,
by default, Eq instances have == and /= in the background and Ord instances have <
and <= in the background. Additional background functions can be provided using the
‘withBackground‘ combinator. In our experiments (§6.4), we found it useful to include
in the background functions appearing in properties.

Whenever a property is tested, these background functions are gathered for all types
and component types of arguments of the property being tested. The background of Bool
is always included.

Background constants Constants of the types being tested, obtained from their Listable
instances, are also included in the background.

Example 6.2 (4th revisit). The background functions used when testing prop_nubid ::
[Int] -> Bool are

(==), (/=) :: Bool -> Bool -> Bool
(==), (/=), (<=), (<) :: Int -> Int -> Bool
(==), (/=), (<=), (<) :: [Int] -> [Int] -> Bool
not :: Bool -> Bool
length :: [Int] -> Int
elem :: Int -> [Int] -> Bool

along with enumerated constants of Bool, Int and [Int] types. �

Enumerating expressions Extrapolate uses Speculate (Chapter 5) to recursively enu-
merate expressions formed by type-correct applications of background functions to back-
ground constants and variables. Speculate avoids generating many distinct but semanti-
cally equivalent expressions by using testing and term rewriting. The expressions enumer-
ated are limited by the configured maximum size. This process is done only once for each
property that has a counterexample.

Enumerating candidate conditions Expressions which have a boolean type are used
as candidate side-conditions.

111

6 Extrapolate: generalizing counterexamples of test properties

Example 6.2 (5th revisit). With Extrapolate configured to consider conditions up to
size 3, Speculate returns the following 24 conditions

1. p

2. False

3. True

4. not p

5. xs == ys

6. xs == []

7. xs /= ys

8. xs /= []

9. xs <= ys

10. xs < ys

11. elem x xs

12. elem 0 xs

13. p == q

14. p /= q

15. x == y

16. x == 0

17. x /= y

18. x /= 0

19. x < y

20. x < 0

21. 0 < x

22. x <= y

23. x <= 0

24. 0 <= x

where p :: Bool; x,y :: Int; xs,ys :: [Int]. Single-variable instances are om-
mited due to the way Speculate works (those are reintroduced later when listing candidate
conditional generalizations). �

The use of Speculate is optional and can be turned of by:

check ‘maxSpeculateSize‘ 0

Using Speculate has two effects:
1. runtime is significantly reduced;

2. detection of neutral conditions is improved.

Discarding neutral side-conditions Neutral conditions are those yielding generaliza-
tions equivalent to a simpler counterexample. For example:

[x,x] when x == 0

is equivalent to simply

[0,0]

So any conditions of the form <var> == <value> is discarded. In addition, conditions
that are tested and found to be true for only one value for a variable are discarded.

Listing conditional generalizations For each generalization, Extrapolate produces all
possible boolean conditions involving its variables based on the list of candidate conditions
— this includes all possible variable renamings.

Testing conditional generalizations Extrapolate tests to find side conditions for which
the generalization falsifies all tests. Of those, Extrapolate selects the ones with the greatest
number of failures (weakest condition).

112

Example Applications and Results 6.4

This is similar to what we have done in Speculate (Chapter 5): there we find side-
conditions to properties, whereas here we apply side-conditions to generalized counterex-
amples.

Example 6.2 (6th revisit). Suppose Extrapolate has been configured to explore con-
ditions of up to size 3. For the first candidate generalization, replacing [0,0] by xs, two
candidate conditions are listed:

1. xs /= []

2. elem 0 xs
Testing shows that the candidate generalization xs does not always falsify the property
under either of these conditions. For example, the property does not fail for the list [0].

For the second candidate generalization, replacing 0:0:[] by x:xs, Extrapolate lazily
lists 8 candidate conditions:

1. xs /= []

2. elem x xs

3. elem 0 xs

4. x /= 0

5. x < 0

6. 0 < x

7. x <= 0

8. 0 <= x

The property only fails for all test values of the form x:xs under the second condition,
elem x xs. Extrapolate reports its fifth and sixth lines of output:

Conditional Generalization:
x:xs when elem x xs �

6.4 Example Applications and Results
In this section, we use Extrapolate to generalize counterexamples of properties about:
• a sorting function (§6.4.1);

• a calculator library (§6.4.2);

• integer overflows (§6.4.3);

• a serializer and parser (§6.4.4);

• the XMonad window manager (§6.4.5).
These example applications are adapted from Pike [2014]. The example applications in
§6.4.2, §6.4.4 and §6.4.5 are respectively of relative small, medium and large scale. The
example application in §6.4.3 was originally crafted with the intention to to make the
use of enumerative testing libraries, like Extrapolate, infeasible — we shall challenge that
intention. In §6.4.6, we use generalizations as property refinements. In §6.4.7 we give a
summary of performance results for all these applications.

In this section, we evaluate Extrapolate on its own. Comparison with related work can
be found in §6.5.

113

6 Extrapolate: generalizing counterexamples of test properties

6.4.1 A sorting function: exact generalization

Carrying on from the example described in the introduction (§6.1), if we include count as
a background function (§6.3.3):

> let chk = check ‘withBackground‘ [constant "count" count]
> ‘withConditionSize‘ 6
> chk (prop_sortCount :: Int -> [Int] -> Bool)

Extrapolate prints:

Conditional Generalization:
x xs when count x xs > 1

This is the exact description of the test cases that fail.
It may seem like a stretch to expect users to figure out that they need to include

the count function in the background. However, during our experiments (cf. §6.4.2 and
§6.4.6), we found a simple rule of thumb for improving the results of Extrapolate: to
include functions occurring in properties. Automatically including these functions in the
background is left as future work (§6.6).

6.4.2 A calculator language

In this section, we use Extrapolate to find and generalize counterexamples to a property
about the simple calculator language described by Pike [2014].

Expressions to be calculated are represented by the Haskell datatype Exp and may
contain integer constants, addition and division.

data Exp = C Int
| Add Exp Exp
| Div Exp Exp

The function eval evaluates Exps and returns a Maybe value:
• Nothing when the calculation involves a division by 0;

• Just an integer otherwise.

eval :: Exp -> Maybe Int
eval (C i) = Just i
eval (Add e0 e1) = liftM2 (+) (eval e0) (eval e1)
eval (Div e0 e1) = let e = eval e1

in if e == Just 0
then Nothing
else liftM2 div (eval e0) e

The following function noDiv01, returns True when no literal division by 0 occurs in
an expression.

1Pike [2014] originally called this function divSubTerms, we found it clearer to call it noDiv0.

114

Example Applications and Results 6.4

noDiv0 :: Exp -> Bool
noDiv0 (C _) = True
noDiv0 (Div _ (C 0)) = False
noDiv0 (Add e0 e1) = noDiv0 e0 && noDiv0 e1
noDiv0 (Div e0 e1) = noDiv0 e0 && noDiv0 e1

Using noDiv0, we define the following test property:

\e -> noDiv0 e ==> eval e /= Nothing

That is, if an expression contains no literal division by 0, evaluating it returns a Just value.
Using Extrapolate, we find a counterexample and two generalizations:

> check $ \e -> noDiv0 e ==> eval e /= Nothing
*** Failed! Falsifiable (after 20 tests):
Div (C 0) (Add (C 0) (C 0))

Generalization:
Div (C _) (Add (C 0) (C 0))

Conditional Generalization:
Div e1 (Add (C 0) (C 0)) when noDiv0 e1

The property fails because it is not enough to test whenever any denominator is a lit-
eral zero constant, we should test that any denominator evaluates to zero. The generalized
counterexamples provide improved information for the programmer. Specifically, construc-
tors that are unrelated to the fault are generalized to variables.

The generate the above conditional generalization we manually included noDiv0 in the
list of background functions.

The following maximal generalizations (§6.5) are out-of-reach for the current imple-
mentation of Extrapolate:

Div e1 e2 when noDiv0 (Div e1 e2)
&& eval e2 == Just 0

Div e1 e2 when noDiv0 e1
&& noDiv0 e2
&& e2 /= (C 0)
&& eval e2 == Just 0

Their conditions have 9 and 16 symbols respectively. The search space of conditions of
those sizes is to big for Extrapolate.

6.4.3 Stress test: integer overflows

As an initial motivating example, Pike [2014] provides the following program and test
property:

115

6 Extrapolate: generalizing counterexamples of test properties

type I = [Int16]
data T = T I I I I I deriving Show

toList :: T -> [[Int16]]
toList (T i j k l m) = [i,j,k,l,m]

pre :: T -> Bool
pre t = all ((< 256) . sum) (toList t)

post :: T -> Bool
post t = (sum . concat) (toList t) < 5 * 256

prop :: T -> Bool
prop t = pre t ==> post t

The property is incorrect because it fails to account for overflows caused by lists containing
very large negatives. Pike [2014] describes this as an example where enumerative property-
based testing tools are infeasible due to the size of input space.

Infeasible by default And indeed, using the standard way to enumerate integers, Ex-
trapolate, an enumerative property-based testing tool, is not able to cope with finding a
counterexample to prop.

By default Extrapolate enumerates integers by alternating between positives and neg-
atives of increasing magnitude:

list :: [Int16] = [0, 1, -1, 2, -2, 3, -3, ...]

With this standard definition, Extrapolate does not find a counterexample, even when
testing a large number of test values — say a million:

> check ‘for‘ 1000000 $ prop
+++ OK, passed 1000000 tests.

Counterexamples will appear only much later in the enumeration.

Feasible by tweaking enumeration Consider the following alternative definition:

list :: [Int16] = [0, 1, -1, maxBound, minBound
, 2, -2, maxBound-1, minBound-1
, 3, -3, maxBound-2, minBound-2, ...]

It alternates not only between positives and negatives but also between extremely small
and extremely large values. The intuition is that, maxBound (32767) and minBound (-32768)
are extreme values that are likely to break the property.

With this simple change, Extrapolate does find a counterexample in less than a second:

> check ‘for‘ 10000 $ prop
*** Failed! Falsifiable (after 8792 tests):
T [] [] [] [-1] [-32768]

Extrapolate does not find a generalization.

116

Example Applications and Results 6.4

Despite using enumerative testing, Extrapolate is able to find faults caused by overflows
by tweaking the integer enumeration. This technique can be extended to other enumerative
property-based testing libraries, like SmallCheck [Runciman et al., 2008], Lazy SmallCheck
[Reich et al., 2013], Feat [Duregård et al., 2012] or Neat [Duregård, 2016].

Conditional generalization The function sum occurs twice in the property. If we in-
clude sum as a background function, Extrapolate is able to find the following conditional
generalization:

> chk = check ‘for‘ 10000 ‘withConditionSize‘ 4
> ‘withBackground‘ [constant "sum" (sum :: [Int16] -> Int16)]
> chk prop
Conditional Generalization:
T xs xs xs ((-1):xs) ((-32768):xs) when 0 == sum xs

Unfortunately, Extrapolate takes half an hour to find this conditional generalization. We
do not expect users of Extrapolate to wait for that long for a conditional generalization
– this specific example is a stress test. In §6.6 we list some avenues of future work to
potentially reduce this runtime.

6.4.4 A serializer and parser

In this section, we apply Extrapolate to the parser and pretty printer for a toy language
described by Pike [2014]. For brevity, we omit details of the implementation here. It has
two main functions:

show’ :: Prog -> String
read’ :: String -> Prog

The serializer code (show’) has approximately 100 lines of code. The parser code (read’)
has approximately 200 lines of code. The parser includes a bug that switches the arguments
of conjunction expressions.

When we test the property that serializing followed by parsing is an identity, Extrapo-
late reports a counterexample along with generalizations:

> check $ \e -> read’ (show’ e) == e
*** Failed! Falsifiable (after 96 tests):
Prog [] [Func (Var "a") [And (Int 0) (Bool False)] []]

Generalization:
Prog _ (Func _ (And (Int _) (Bool _):_) _:_)

Conditional Generalization:
Prog _ (Func _ (And e f:_) _:_) when e /= f

The reported conditional generalization clearly characterizes a set of failing cases: the
property fails whenever there is an And expression with different operands. This charac-
terization strongly hints at a programming error failing to distinguish operands correctly.

117

6 Extrapolate: generalizing counterexamples of test properties

6.4.5 XMonad

XMonad [Stewart and Sjanssen, 2007] is a tiling window manager written in roughly 1700
lines of Haskell code. The XMonad developers defined over a hundred test properties.

In this section, we use Extrapolate to find an artificial bug introduced by Pike [2014]
in XMonad.

The function XMonad has a function

removeFromWorkspace ws = ws { stack = stack ws >>= filter (/=w) }

which removes the current item (or window) from a given workspace.

The bug As described by Pike [2014], we introduce an artificial bug, replacing /= by ==
simulating a typo:

removeFromWorkspace ws = ws { stack = stack ws >>= filter (==w) }

The property The following property prop_delete is one of XMonad’s original test
properties.

prop_delete x =
case peek x of
Nothing -> True
Just i -> not (member i (delete i x))

A counterexample In a regular enumerative property-based testing tool, we would get
the following minimal counterexample for prop_delete:

> check prop_delete
Failed! Falsifiable (after 15 tests):
StackSet
{ current = Screen

{ workspace = Workspace
{ tag = 0
, layout = 0
, stack = Just (Stack {focus = ’a’, up = "", down = ""})
}

, screen = 0
, screenDetail = 0
}

, visible = []
, hidden = []
, floating = fromList []
}

118

Example Applications and Results 6.4

A generalization When we pass prop_delete to Extrapolate, we instead get the fol-
lowing output:

> check prop_delete
*** Failed! Falsifiable (after 15 tests):
StackSet (Screen (Workspace 0 0 (Just (Stack ’a’ "" ""))) 0 0)

[] [] (fromList [])

Generalization:
StackSet (Screen (Workspace _ _ (Just _)) _ _) _ _ _

Compare the non-generalized counterexample above with its generalization. We can see
quite clearly which parts of are actually related to the fault: what characterizes the failing
cases is that an optional third argument (of type Maybe Stack) is present in the argument
workspace. Or; as Pike [2014] explained “it turns out what matters is having a Just value,
which is the stack field that deletion works on!”

6.4.6 Generalizations as property refinements

Whenever Extrapolate finds a generalised condition C for a property P to fail and we feel
that the property is incorrect rather than the code under test, we can directly derive from
it a candidate variant of that property: not C ==> P. In this way, Extrapolate is also
a tool that assists in the refinement of initially conjectured properties, too wide in their
scope to be generally true, into more precise variants with scopes defined by conditions.

The actual antecedent introduced in such a refinement may be a simplified equivalent
of ‘not C’. Or it may be a different condition, prompted and informed by C, but which the
programmer conjectures to be (closer to) the exact necessary and sufficient condition for
the property to hold. A programmer using testing without any generalising extrapolation
has far more need for such conjectures and has to work harder to find them.

The process of extrapolated checking followed by property refinement may be iterative,
terminating when testing finds no counterexample at all. There may be intermediate
steps as Extrapolate generalisations are often still approximations — either too general or
not general enough. Adding or strengthening an antecedent condition allows us to make
progress as further testing reveals new residual counterexamples and their generalisations.

Consider the following property about words:

prop_lengthWords :: String -> Bool
prop_lengthWords s = s /= ""

==> length (words s) == length (filter isSpace s) + 1

When passed prop_lengthWords, Extrapolate reports:

*** Failed! Falsifiable (after 4 tests):
" "

Generalization:
’ ’:_

119

6 Extrapolate: generalizing counterexamples of test properties

Conditional Generalization:
c:_ when c <= ’ ’

We forgot to account for lists that start (or end) with spaces. The conditional generalization
is perhaps clearer when we consider the following list comprehension:

> [c | c <- list, c <= ’ ’]
" \n\t"

The function words also considers ’\n’ and ’\t’ to be spaces. Prompted by this, we add
Data.Char.isSpace to the background and Extrapolate reports:

> check ‘withBackground‘ [constant "isSpace" isSpace] $ prop_lengthWords
...
Conditional Generalization:
c:_ when isSpace c

Using this information, we refine our property:

prop_lengthWords s = s /= "" && not (isSpace (head s))
&& not (isSpace (last s))

==> length (words s) == length (filter isSpace s) + 1

Extrapolate then reports:

> check ‘withBackground‘ [constant "isSpace" isSpace] $ prop_lengthWords
*** Failed! Falsifiable (after 43 tests):
"a a"

Conditional Generalization:
c:’ ’:’ ’:c:"" when not (isSpace c)

We forgot to account for lists with double spaces. This is made even clearer by adding
Data.List.isInfixOf and " " to the background and running Extrapolate again on the
original prop_lengthWords:

Conditional Generalization:
cs when " " ‘isInfixOf‘ cs

We finally refine the property to a correct property of words:

prop_lengthWords s = noDoubleSpace (" " ++ s ++ " ")
==> length (words s) == length (filter isSpace s) + 1

where
noDoubleSpace s = and [not (isSpace a && isSpace b)

| (a,b) <- zip s (tail s)]

The number of words in a string is given by the number of spaces plus one so long as there
are no leading, trailing or double spaces.

120

Example Applications and Results 6.4

Table 6.1: Summary of results for five different applications, testing properties with Ex-
trapolate, SmartCheck and Lazy SmallCheck; #-symbols = #-constants + #-variables;
#-constants = number of constants in the reported counterexamples; #-variables = num-
ber of variables in the reported counterexamples; generality = how general is the coun-
terexample (= least general; = most general; × = degenerate); runtime = rounded
elapsed time; space = peak memory residency.

Example & Property Tool #
-s
ym

bo
ls

#
-c
on

st
an

ts

#
-v
ar
ia
bl
es

ge
ne

ra
lit
y

Runtime Memory

Faulty sort (§6.1) Ungeneralized 6 6 0 < 1s 23MB
\x xs -> count x (sort xs) Lazy SmallCheck 6 6 0 < 1s 33MB

== count x xs SmartCheck (min) 6 5 1 < 1s 22MB
SmartCheck (median) 12 11 1 < 1s 22MB
Extrapolate 6 2 4 < 1s 26MB
Extrapolate (side) 8 4 4 5s 34MB

Faulty noDiv0 (§6.4.2) Ungeneralized 8 8 0 < 1s 23MB
\e -> noDiv0 e Lazy SmallCheck 8 7 1 < 1s 33MB

==> eval e /= Nothing SmartCheck 7 6 1 × < 1s 22MB
Extrapolate 8 7 1 < 1s 26MB
Extrapolate (side) 10 8 2 < 1s 28MB

Integer Overflow (§6.4.3) Ungeneralized 10 10 0 < 1s 30MB
\t -> pre t -> post t Lazy SmallCheck – c.e. not found – 60m 00s 36MB

SmartCheck (min) 10 5 5 × < 1s 22MB
SmartCheck (median) 16 11 5 × < 1s 22MB
Extrapolate 10 10 0 < 1s 36MB
Extrapolate (side) 15 9 6 25m 18s 60MB

Faulty parser (§6.4.4) Ungeneralized 17 17 0 < 1s 25MB
\e -> read’ (show’ e) == e Lazy SmallCheck 17 17 0 12s 36MB

SmartCheck (min) 17 17 0 < 1s 23MB
SmartCheck (median) 27 27 0 < 1s 23MB
Extrapolate 14 7 7 < 1s 27MB
Extrapolate (side) 16 7 9 9s 35MB

Faulty XMonad (§6.4.5) Ungeneralized 16 16 0 < 1s 28MB
prop_delete SmartCheck 13 9 4 – –

Extrapolate 12 4 8 < 1s 30MB
Extrapolate (side) 15 7 8 < 1s 31MB

121

6 Extrapolate: generalizing counterexamples of test properties

6.4.7 Performance Summary

Performance results are summarized in Table 6.1. For all example applications, Extrapo-
late takes up to a second to produce unconditional generalizations. For the calculator and
XMonad examples, Extrapolate also takes up to a second to produce conditional general-
izations. For the sorting and parser applications, Extrapolate takes respectively 5 and 9
seconds to consider conditional generalizations. The Table also includes results for other
tools, to be discussed in §6.5.

Our tool and examples were compiled using ghc -O2 (version 8.2.1) under Linux.
The platform was a PC with a 2.2Ghz 4-core processor and 8GB of RAM.

6.5 Comparison with Related Work

Tracing and step-by-step evaluation A lot of research has been done on tracing and
step-by-step evaluation. In the realm of Haskell, we can note tools such as Freja [Nilsson
and Sparud, 1997, Nilsson, 1998], Hat [Wallace et al., 2001, Chitil et al., 2016, 2001]
and Hood [Gill, 2001]. These tools facilitate the process of locating faults in programs.
Extrapolate on other hand does not directly improve this process, but rather gives the
programmer improved results to inform it. Except when a generalized counterexample
makes it very obvious where the fault is, Extrapolate does not replace tools like Freja, Hat
and Hood: it is more of a complement. Claessen et al. [2003] elaborate on the relation
between property-based testing and tracing.

Property discovery QuickSpec [Claessen et al., 2010, Smallbone et al., 2017] and Spec-
ulate (Chapter 5) are tools capable of automatically conjecturing properties when given
a collection of Haskell functions. Like Extrapolate, these tools rely mainly on testing to
achieve their results. Extrapolate does not conjecture properties like these tools, but its
generalized counterexamples can be seen as properties about faults. In Example 6.1, the
counterexample x (x:x:_) can be seen as the following property:

\x xs -> not $ prop_sortCount x (x:x:xs)

Within this view, Extrapolate’s generalization aims to find largest test space in which the
negation of the property under test succeeds. As stated in §6.3, Extrapolate uses Speculate
internally.

Program Synthesis Magic Haskeller [Katayama, 2004, 2005, 2010, 2012] and IGOR II
[Kitzelmann, 2007, Hofmann et al., 2010, Hofmann and Kitzelmann, 2010] are systems for
program synthesis using inductive functional programming techniques [Kitzelmann, 2010].
They are able to produce programs based on a limited list of input-output bindings and
a set of background functions. Similarly, there are PROGOL [Muggleton, 1995], FOIL
[Quinlan and Cameron-Jones, 1993] and GOLEM [Cameron-Jones and Quinlan, 1994] for

122

Comparison with Related Work 6.5

Table 6.2: Extrapolate contrasted with Lazy SmallCheck and SmartCheck: =yes; =no.

Sm
ar
tC

he
ck

E
xt
ra
po

la
te

La
zy

SC

Random testing
Enumerative testing
Demand-driven testing

Automatic generator instance derivation

Generalized counterexamples
strict
partial (w/ undefined values)
functional generalizations
repeated variables
side conditions

logic programs. There is a potential for the application of these systems and their tech-
niques to generalize counterexamples: based on which test inputs pass or fail, generate a
program to describe a set of counterexamples.

Lazy SmallCheck Lazy SmallCheck [Runciman et al., 2008, Reich et al., 2013] is a
property-based testing tool that uses laziness to prune the search space. Before testing
fully defined test values, it tries partially defined test values: if a property fails or passes
for a partially defined value, more defined variations of that value need not be tested. As a
side-effect of this test strategy, Lazy SmallCheck is able to return partially defined values
as counterexamples (see Table 6.4). These can be read as generalized counterexamples.

SmartCheck Because QuickCheck tests values randomly, it does not always return small
counterexamples, but relies on shrinking [Claessen, 2012] to derive smaller counterexamples
from larger ones. SmartCheck [Pike, 2014] is an extension to QuickCheck that provides
two improvements: a better algorithm for shrinking and generalization of counterexamples.
SmartCheck’s generalization algorithm performs both universal and existential quantifica-
tion but does not allow repeated variables. SmartCheck is perhaps the most closely related
tool to Extrapolate, and Pike’s paper inspired the work reported here.

Table 6.2 summarizes differences between three tools for Haskell able to report gener-
alized counterexamples: Lazy SmallCheck, SmartCheck and Extrapolate. The key contri-
bution of Extrapolate is allowing for repeated variables and side conditions in generalized
counterexamples.

We now revisit examples from §6.4 comparing results of Extrapolate with results of
SmartCheck and Lazy SmallCheck.

123

6 Extrapolate: generalizing counterexamples of test properties

Table 6.3: Counterexamples for the count property of sort (Example 6.1 from §6.1)
reported by Extrapolate, SmartCheck and Lazy SmallCheck.

Tool Counterexample

Ungeneralized 0 [0,0]
Lazy SmallCheck 0 [0,0]
SmartCheck (min) 4 (4:4:x0)
SmartCheck 9 (8:17:9:9:x0)
Extrapolate x (x:x:_)
Extrapolate (side) x xs when count x xs > 1

Criteria The following paragraphs define some of the criteria used in evaluating results
of different tools: generality and degenerate counterexamples.

Generality The more general the counterexample, the better it is. We consider a gener-
alized test-case description more general than another if:
• it strictly subsumes another;

• it includes a larger set of failing test cases.
We say that a generalization is maximal when no more general description exists.

Degenerate counterexamples When a reported generalized counterexample is too general
and includes inputs that are not counterexamples, we say it is degenerate. Later in this
section, we shall see examples of this.

Representatives and Median values SmartCheck randomly tests values and does not usu-
ally report the same counterexamples. In Tables 6.3–6.7 counterexamples for SmartCheck
are median representatives only. In Table 6.1, the values for numbers of symbols, construc-
tors and variables are the median of 1000 sample runs.

Summary Table Table 6.1 summarizes all results. For most examples, Extrapolate
gives more general results than either Lazy SmallCheck or SmartCheck. For all examples,
Extrapolate gives results at least as general as Lazy SmallCheck and SmartCheck.

All tools usually report their results within a second, a reasonable time when testing
a property. Extrapolate is slower to produce conditional generalizations on the sort and
parser examples, taking respectively 5s and 9s. This increased runtime is still reasonable
as generalization is not performed for every property under test but only for those that
fail. There are no significant differences in memory use.

Faulty sort (§6.1) See Table 6.3. The counterexample reported by Extrapolate has the
same number of symbols as the one reported by Lazy SmallCheck. Lazy SmallCheck is not
able to report a generalization as the property being tested is not lazy. Extrapolate is able

124

Comparison with Related Work 6.5

Table 6.4: Counterexamples for the property involving noDiv0 (§6.4.2) reported by Ex-
trapolate, SmartCheck and Lazy SmallCheck. Most generalized counterexamples reported
by SmartCheck are degenerate.

Tool Counterexample

Ungeneralized Div (C 0) (Add (C 0) (C 0))
Lazy SmallCheck Div (C _) (Add (C 0) (C 0))
SmartCheck Div x0 (Add (C (-5)) (C 5))
Extrapolate Div (C _) (Add (C 0) (C 0))
Extrapolate (side) Div e1 (Add (C 0) (C 0)) when noDiv0 e1

to generalize the tail and the initial elements of the list whereas SmartCheck2 is only able
to generalize the tail. With the function count in the background, Extrapolate reports a
maximal generalization – there is no more general description of the failing cases.

The reported runtime of 5 seconds for this example, only applies if we try to reach
the condition involving count by increasing the maximum explored condition size to 6.
With the default settings, Extrapolate reports the condition involving elem in two seconds
(§6.1).

Calculator and faulty noDiv0 (§6.4.2) See Table 6.4. Extrapolate and Lazy Small-
Check report the same generalization. The generalizations SmartCheck reports in 96% of
runs are too general — as they include values that are not counterexamples if we read ==>
as a logical implication. Indeed they are not failing test cases. Concerning the counterex-
ample reported in Table 6.4:

> let prop e = noDiv0 e ==> eval e /= Nothing
> let x0 = (Div (C 0) (C 0))
> prop (Div x0 (Div (C (-5)) (C 5)))
True

With the precondition falsified, the property holds.

Integer overflow (§6.4.3) See Table 6.5. Lazy SmallCheck is not able to find a coun-
terexample even after running for an hour, replicating the result reported by Pike [2014].
We did not use a customized integer enumeration (§6.4.3). Although Extrapolate fails to re-
port an unconditional generalization, it reports a conditional generalization. SmartCheck
reports a degenerate generalization that includes inputs that are not counterexamples.
Concerning the proposed counterexample reported in Table 6.5:

> let x0 = [21874]; x1 = []; x2 = []; x3 = []
> prop (T x3 (-21874:x0) x2 (-12585:[]) x1)
True

2Since SmartCheck only tries to generalize the first argument of properties (a design choice), the
property had to be uncurried for it to report a generalization.

125

6 Extrapolate: generalizing counterexamples of test properties

Table 6.5: Counterexamples for the property about integer overflows (§6.4.3) reported by
Extrapolate, SmartCheck and Lazy SmallCheck. The generalized counterexample reported
by SmartCheck is degenerate.

Tool Counterexample

Ungeneralized T [] [] [] [-1] [-32768]
Lazy SmallCheck — timeout: c.e. not found —
SmartCheck T x3 (-21874:x0) x2 (-12585:[]) x1
Extrapolate T [] [] [] [-1] [-32768]
Extrapolate (side) T xs xs xs ((-1):xs) ((-32768):xs) when 0 == sum xs

Table 6.6: Counterexamples for the parser property (§6.4.4) reported by Extrapolate,
SmartCheck and Lazy SmallCheck.
Tool Counterexample

Ungeneralized Lang {modules = [], funcs = [Func {fnName = Var "a",
(full record syntax) args = [And (Int 0) (Bool False)], stmts = []}]}
Ungeneralized Lang [] [Func (Var "a") [And (Int 0) (Bool False)] []]
Lazy SmallCheck Lang [] [Func (Var "a") [And (Int 0) (Bool False)] []]
SmartCheck Lang [] [Func (Var "U") []

[Return (And (Bool False) (Int 0))]]
Extrapolate Lang _ (Func _ (And (Int _) (Bool _):_) _:_)
Extrapolate (side) Lang _ (Func _ (And e f:_) _:_) when e /= f

Faulty parser (§6.4.4) See Table 6.6. Neither Lazy SmallCheck nor SmartCheck is
able to report a generalization. Extrapolate is able to report both an unconditional gen-
eralization and to improve it in a further conditional generalization. Extrapolate reports
counterexamples that are smaller than counterexamples reported by other tools.

Faulty XMonad (§6.4.5) See Table 6.7. SmartCheck3 and Extrapolate give counterex-
amples of almost the same number of symbols, but the Extrapolate counterexample has
fewer constant constructors and more variables. SmartCheck always assigns variable names
whereas Extrapolate uses “_” for unrepeated variables, making it more immediately appar-
ent where component values do not matter. Extrapolate’s conditional and unconditional
generalizations are equivalent.

Versions used We have used the following versions for each tool:
• Lazy SmallCheck: version of 2014-07-07 — compiled with GHC 7.8.4;

• SmartCheck: version 0.2.4 — compiled with GHC 8.0.2;

3Due to time constraints we have not tested Lazy SmallCheck or SmartCheck on this example. The
SmartCheck counterexample is as reported by Pike [2014] in the original paper about SmartCheck.

126

Conclusions and Future Work 6.6

Table 6.7: Counterexamples for prop_delete from XMonad (§6.4.5) reported by Extrapo-
late and SmartCheck. The SmartCheck counterexample is the one reported by Pike [2014]
in the original SmartCheck paper.
Tool Counterexample

Ungeneralized StackSet (Screen (Workspace 0 0 (Just (Stack ’a’ "" ""))) 0 0)
[] [] (fromList [])

SmartCheck StackSet (Screen (Workspace x0 (-1) (Just x1)) 1 1)
x2 x3 (fromList [])

Extrapolate StackSet (Screen (Workspace _ _ (Just _)) _ _) _ _ _
Extrapolate (side) StackSet (Screen (Workspace _ _ ms) _ _) _ _ _ when Nothing /= ms

• Extrapolate: version 0.3.0 — compiled with GHC 8.2.1.

6.6 Conclusions and Future Work

Conclusions In summary, we have presented a tool that is able to generalize counterex-
amples of functional test properties. As set out in §6.2 and §6.3, Extrapolate enumerates
and tests generalizations reporting the one that fails all tests. We have demonstrated in
§6.4 Extrapolate’s applicability to a range of examples. And after reviewing some related
work §6.5, we have compared Extrapolate results with those reported by other tools.

Value of reported laws The conjectured generalizations reported by Extrapolate are sur-
prisingly accurate in practice, despite their inherent uncertainty in principle. They can
provide helpful insights into the source of faults. Allowing repeated variables and side-
conditions makes possible the discovery of generalizations previously unreachable by other
tools that provide similar functionality such as Lazy SmallCheck [Reich et al., 2013] and
SmartCheck [Pike, 2014].

Ease of use Extrapolate requires no more programming effort than a regular property-
based testing tool such as QuickCheck [Claessen and Hughes, 2000] or SmallCheck [Runci-
man et al., 2008]. If only standard Haskell datatypes are involved, no extra Listable or
Generalizable instances are needed. If user-defined data types can be freely enumerated
without a constraining data invariant, instances can be automatically derived.

Future Work We note a number of avenues for further investigation that could lead to
improved versions of Extrapolate or similar tools.

Type-by-type generalization Although sufficiently fast for the examples we have tried,
the current algorithm to find counterexamples is very naïve. It considers generalizations
replacing subexpressions of several different types by variables, all in one step. We believe
runtime could be reduced by switching to an iterative process where generalization happens

127

6 Extrapolate: generalizing counterexamples of test properties

one type at a time. First at outer types, then at inner types. To see why, consider the
following example.

Recall Example 6.2. Extrapolate lazily generates 12 generalizations of the list [0,0]:
xs, x:xs, x:y:xs, x:x:xs, x:y:[], x:x:[], x:0:xs, x:0:[], 0:xs, 0:x:xs,
0:x:[] and 0:0:xs. These generalizations include replacement of sub-expressions by
variables of types Int and [Int]. To reduce the number of generated expressions, we
might first consider generalizations with replacements of sub-expressions of [Int] type:
xs, 0:xs and 0:0:xs (the first correct generalization). We then consider further
generalizations with replacements of sub-expressions of Int type: x:y:xs, x:x:xs,
0:x:xs and x:0:xs with x:x:xs being the correct generalization. In this example,
the total number of considered generalizations is reduced from 12 to 7.

First generalizing with one variable per type An interesting observation used in Speculate
(§5.4.2) could be used to speed-up Extrapolate. For a property with several variables per
type to be true, its one-variable-per-type instance should be true as well, for example:

∀x y z.(x+ y) + z = x+ (y + z)⇒ ∀x.(x+ x) + x = x+ (x+ x)

The same is true for generalized counterexamples: if lists of x:y:xs always falsify a prop-
erty, then lists of the form x:x:xs should as well. Based on this observation, we can test
one-variable-per-type generalizations first, potentially reducing the generalization search
space.

Generalizing from several counterexamples The current version of Extrapolate bases its
generalizations on a single counterexample. As mentioned in §6.5, it may be possible
to use techniques from inductive functional programming [Kitzelmann, 2010] to base its
generalizations on several counterexamples. This could potentially reduce the time needed
to produce generalizations.

Parallelism As a way to improve performance, particularly when dealing with costly test
functions, we could parallelize the testing of different enumerated generalizations among
multiple processors.

Multiple generalizations Reported generalizations are derived from initial counterexam-
ples. After finding a generalization, Extrapolate could search for other counterexamples
and report additional generalizations. These could hopefully be of additional help in finding
the source of faults.

Automatically include functions occurring in properties in the background In several ex-
amples (§6.4), we provided functions present in the property as background for side condi-
tions improving generalized counterexamples. This could be done automatically to improve
out-of-the-box results.

128

Conclusions and Future Work 6.6

Improved control of configuration parameters Future versions of Extrapolate could offer
improved control of configuration parameters. As briefly mentioned in §6.2, the size limit
on side conditions is a very fragile parameter: just incrementing it may result in a runtime
increase of a few orders of magnitude. To make it easier to configure, future versions of
Extrapolate could offer a time limit parameter for when exploring conditions.

Custom generic derivation hierarchy The improvement of counterexamples in favour of
more general ones can be compared with the improvement of counterexamples from QuickCheck
by shrinking. In QuickCheck, though there are some proposed default generic derivation
rules for shrinking, the shrinking methods are also exposed and custom shrinking func-
tions can be declared explicitly. In Extrapolate, the background is a bit like that: there
are defaults, and options to declare more. But the method of defining and searching the
hierarchy of generalizations is a fixed default. Allowing it to be overridden could be one
way to solve the problem of generalizations that break invariant conditions.

Availability
Extrapolate is freely available with a BSD3-style license from:
• https://hackage.haskell.org/package/extrapolate

• https://github.com/rudymatela/extrapolate
This chapter describes Extrapolate as of version 0.3.0.

129

https://hackage.haskell.org/package/extrapolate
https://github.com/rudymatela/extrapolate

130

Chapter 7

Conclusions & Future Work

This thesis has presented techniques and tools for discovery, refinement and generalization
of properties of functional programs by reasoning from test results. We used the Haskell
programming language as a setting, but we expect these techniques to be applicable in
other functional programming languages. Chapter 2 reviewed past work in the area of
property-based testing. Chapter 3 described the LeanCheck tool and a simple technique
for enumerative property-based testing. Chapter 4 described the FitSpec tool and a tech-
nique for refinement of properties using mutation testing with regards to minimality and
completeness. Chapter 5 described the Speculate tool and a technique for discovery of prop-
erties involving conditional equations and inequalities. Chapter 6 described the Extrapolate
tool and a technique for generalization of counterexamples of test properties.

7.1 Summary of Contributions
In the following paragraphs, we summarize the contributions of each chapter.

Chapter 2, Literature Review Chapter 2 provided an updated literature review on
the area of property-based testing.

Chapter 3, LeanCheck Enumerative size-bounded property-based testing already ex-
isted in the literature [Runciman et al., 2008, Reich et al., 2013, Duregård et al., 2012].

Chapter 3 contributed a size-bounded enumeration of functions and the framework on
which we built other tools presented in this thesis.

Chapter 4, FitSpec Mutation testing is not new [DeMillo et al., 1978, Le et al., 2014,
Jia and Harman, 2011, Offutt and Untch, 2001]. Previous work in this area was mostly
concerned with completeness of tests and how strongly they restrict the functions under
test. It was also based mostly on syntactic mutations.

Chapter 4 contributed a technique for enumerative black-box mutation testing avoiding
the problem of repeated mutants and a way to use the results of mutation testing to

131

7 Conclusions & Future Work

guide refinement of property sets. These refinements regard minimality and completeness.
Towards completion, to kill a mutant, we either add a property or make an existing property
stronger. Towards minimality, we remove a property because it is redundant. Moving away
from syntactic mutations to semantic or black-box mutations, was one of the keys for the
refinement guidance to work as we avoid the problem of repeated mutants.

Chapter 5, Speculate Property discovery techniques were already described in the
literature [Claessen et al., 2010, Smallbone, 2011, 2013, Smallbone et al., 2017] but were
limited to discovery of equations.

Chapter 5 contributed techniques for direct discovery of inequalities and conditional
equations. Now, users can get more information with the same amount of programming
effort as before. Reported laws can be used for understanding, documentation, and testing.

Chapter 6, Extrapolate Techniques for generalization of counterexamples were already
described in the literature [Reich et al., 2013, Pike, 2014].

Chapter 6 contributed a more general technique which allows for generalized counterex-
amples with repeated variables and side-conditions. Often, Extrapolate’s results are more
general than those reported by other tools, informing the programmer more fully and more
immediately what characterizes failures. When properties are incorrect, Extrapolate’s re-
sults can be used to guide property refinement.

7.2 Conclusions

The following three paragraphs, recall each of the goals set out in the motivation (§1.1).
Both FitSpec and Speculate can reduce the human effort needed for property-based

testing. FitSpec can be used to guide the creation of properties (Chapter 4). Speculate
can discover properties altogether (Chapter 5).

FitSpec can reduce the computational effort needed for property-based testing. Given
a property set, it conjectures which properties may be redundant and how. The user
is prompted to consider removing these properties reducing the computational effort of
further regression tests (Chapter 4).

Extrapolate can increase the benefit obtained from property-based testing. It not
only reports a failing counterexample but also generalized counterexamples informing the
programmer more fully and more immediately what characterizes failures (Chapter 6).

Value of Results Results of lightweight reasoning based on testing are surprisingly
accurate in practice, despite their inherent uncertainty in principle. These results often
lead to helpful insights into functions under test.

If the above statement seems familiar, it may be because variations of it are found in
the conclusions of Chapters 4, 5 and 6, where the “results of lightweight reasoning” are
respectively: refinements of properties, discovered laws and generalized counterexamples.

132

Future Work 7.3

Ease of Use Arguably, tools are easier to use if they require less work from the program-
mer. As illustrated in Chapters 3 and 6, using LeanCheck or Extrapolate requires no more
programming effort than other property-based testing tools such as QuickCheck [Claessen
and Hughes, 2000] or SmallCheck [Runciman et al., 2008]. Even in Chapters 4 and 5 where
some extra work is required of the programmer, writing a program to apply FitSpec and
Speculate takes only a few lines of code. In particular, using Speculate requires no more
programming effort than using QuickSpec.

All tools described in this thesis require that data types under test be instances of the
Listable typeclass. If only standard Haskell data types are involved, no extra Listable
instances are needed. If user-defined data types can be freely enumerated without a con-
straining data invariant, instances can be automatically derived. However, often we do
need to restrict enumeration by a data invariant, and a crude application of a filtering
predicate may be too costly, with huge numbers of discarded values. Effective use of the
tools may sometimes require careful programming of custom Listable instances, even if
suitable definitions can be very concise. The Speculate library does not currently incor-
porate methods to derive enumerators of values satisfying given preconditions [Bulwahn,
2012, Lindblad, 2007].

Speculate and FitSpec both require the user to select functions to be reasoned upon
manually. They do not currently incorporate methods to automatically select functions
based on simply the module name, like in the EasySpec interface for QuickSpec [Kerckhove,
2017].

Applicability and Portability To use the tools and techniques described in this thesis,
the only restriction placed on properties and functions under test is that they should
be purely functional, without side effects. In the context of Haskell, this means no IO
computations. Because these tools are based on black-box testing, that means they work
on programs that use language extensions. In contrast, some other techniques, like Reach
[Naylor and Runciman, 2007] or MuCheck [Le et al., 2014], perform syntactic evaluation
of programs, and require that they conform to a core language or a subset of Haskell.

We have avoided undue reliance on GHC compiler extensions, so it is easy to port the
tools to other Haskell compilers: we stuck very close to the Haskell 98 and 2010 standards
[Jones, 2003, Marlow, 2010]. This also means that the tools are easier to maintain as they
mostly rely on established and stable language features.

The tools we developed are not research tools only but work in practice. They are
easy to install and run using the current standard Haskell environments. Early users
have included computing professionals and students engaged in practical work for taught
courses.

7.3 Future Work

As a result of work carried out for this thesis, we hope to have improved the tool ecosystem
for property-based testing in Haskell. We can reasonably claim that property-based testing

133

7 Conclusions & Future Work

is a little bit easier and more useful now than it was before we started. Nevertheless, there
is still pretty room for improvement, as detailed in the next paragraphs.

Properties about evaluation We could explore properties about evaluation, specifi-
cally, about strictness, performance and sharing.

Properties about strictness In this thesis, we have focused on properties about fully defined
values. Even in Chapter 6, where we explored generalizations of counterexamples, they
represent sets of fully defined counterexamples. We could extend the work of this thesis
to include properties about strictness and the demands on argument values. For example,
consider the following crude property about the strictness of take:

prop_takeLazy xs = take (length xs) (xs ++ undefined) == xs

Maybe one could devise a Speculate-like technique that conjectures these kind of proper-
ties? To achieve this, one could incorporate ideas from the work of Runciman et al. [2008]
and Reich et al. [2013] on Lazy SmallCheck and the work of Danielsson and Jansson [2004].

Properties about performance Smallbone and Gedell [2013–2017] implemented a tool that
is able to infer the computational complexity of programs by testing. We can think of
defining and testing properties about expected performance of programs, such as: the
average case complexity of sort should be O(n log n).

Properties about sharing We could explore properties about sharing and how things are
arranged in memory. This would be useful when implementing data structures that depend
on sharing for efficient use of memory and to avoid repeated computations. Take for
example, the following imaginary data structure:

data DataSuffix = DataSuffix xs ys

Suppose there is a data invariant telling ys is always a suffix of xs. With the current tools,
it is easy to define a property that checks this. However, for the sake of efficiency, we may
wish to extend the invariant to mean that ys is a suffix of xs from the memory point of
view: when traversing xs, at some point, one of the conses of xs will point at the same
memory location of ys. We might investigate how to define and test such properties.

Scalability FitSpec and Speculate do not scale well for some examples (cf. §5.5.5). Im-
proved versions of FitSpec might avoid computing the entire table of properties × mutants.
Improved versions of Speculate might avoid computing all possible inequalities between
class representatives by exploring the transitivity and anti-symmetry properties of order-
ings. However, it is unclear if these changes will have a huge impact on performance as
Haskell’s lazyness already helps.

Parallelism As a way to improve performance, particularly when dealing with costly test
functions (§5.5.5), we could parallelise the testing of properties among multiple processors.
We imagine this would be just laborious, but will not provide many challenges.

134

Future Work 7.3

Signature inference for property discovery and refinement Although it is easy to
write a program to apply FitSpec or Speculate, it could be a chore in a project applying
both tools to several modules.

Kerckhove [2017] describes EasySpec. The user provides only a module name from the
command line and EasySpec automatically select functions to describe using QuickSpec.
EasySpec or an alternative implementation could be integrated with either FitSpec or
Speculate, making it easier to use those tools.

Deriving efficient generators for data types with a data invariant One could
incorporate methods to derive efficient generators of values satisfying given preconditions
[Bulwahn, 2012, Lindblad, 2007, Runciman et al., 2008, Reich et al., 2013, Duregård, 2016].
Speculate itself may be helpful in doing this. On §5.5.5 we manually use the laws reported
by Speculate to discard non-canonical regular expressions from their enumeration. The
possibility of automating this process could be investigated.

Program generation We believe there is potential to use Speculate in enumerative
program generation [Katayama, 2004, Reich, 2013]. Discovered laws can be used to prune
away semantically equivalent programs.

Application in other programming languages We could explore porting the tools
developed in this thesis to other functional programming languages. Even more interest-
ingly, we could also explore porting to other non-functional programming languages and
the challenges of dealing with side effects.

Availability
LeanCheck, FitSpec, Speculate and Extrapolate are freely available with a BSD3-style
licence from:
• https://hackage.haskell.org/package/leancheck
• https://hackage.haskell.org/package/fitspec
• https://hackage.haskell.org/package/speculate
• https://hackage.haskell.org/package/extrapolate

or alternatively from:
• https://github.com/rudymatela/leancheck
• https://github.com/rudymatela/fitspec
• https://github.com/rudymatela/speculate
• https://github.com/rudymatela/extrapolate

All example applications reported here are present in the tools’ source packages making
results easily replicable.

135

https://hackage.haskell.org/package/leancheck
https://hackage.haskell.org/package/fitspec
https://hackage.haskell.org/package/speculate
https://hackage.haskell.org/package/extrapolate
https://github.com/rudymatela/leancheck
https://github.com/rudymatela/fitspec
https://github.com/rudymatela/speculate
https://github.com/rudymatela/extrapolate

136

Bibliography

Haskell’s Data.Dynamic library documentation. https://hackage.haskell.org/
package/base/docs/Data-Dynamic.html, 2017.

Bernhard K Aichernig. Contract-Based Testing. In Formal Methods at the Crossroads.
From Panacea to Foundational Support, pages 34–48. Springer, 2003.

Tristan Oliver Richard Allwood. Finding The Lazy Programmer’s Bugs. PhD thesis,
Imperial College London (University of London), 2011.

Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. Testing telecoms software
with QuviQ QuickCheck. In Erlang’06, pages 2–10. ACM, 2006.

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University
Press, 1999.

Leo Bachmair, Nachum Dershowitz, and David A. Plaisted. Completion without failure.
In Resolution Of Equations In Algebraic Structures, volume 2, pages 1–30. Academic
Press, Boston, 1989.

Adrian Bachmann, Christian Bird, Foyzur Rahman, Premkumar Devanbu, and Abraham
Bernstein. The Missing Links: Bugs and Bug-fix Commits. In FSE’10, pages 97–106.
ACM, 2010.

Stefan Berghofer and Tobias Nipkow. Random testing in Isabelle/HOL. In SEFM’04.
IEEE, 2004.

Richard S. Bird. An Introduction to the Theory of Lists. Technical monograph prg-56,
Oxford University Computing Laboratory, October 1986.

Luc Bougé, Nicole Choquet, Laurent Fribourg, and M-C Gaudel. Test sets generation from
algebraic specifications using logic programming. Journal of Systems and Software, 6
(4):343–360, 1986.

Rudy Braquehais and Colin Runciman. FitSpec: refining property sets for functional
testing. In Haskell’16, pages 1–12. ACM, 2016.

137

https://hackage.haskell.org/package/base/docs/Data-Dynamic.html
https://hackage.haskell.org/package/base/docs/Data-Dynamic.html

BIBLIOGRAPHY

Rudy Braquehais and Colin Runciman. Extrapolate: generalizing counter-examples of
functional test properties. In IFL 2017 (Draft Proceedings). ACM, 2017a.

Rudy Braquehais and Colin Runciman. Speculate: discovering conditional equations and
inequalities about black-box functions by reasoning from test results. In Haskell’17,
pages 40–51. ACM, 2017b.

Rudy Braquehais, Michael Walker, José Manuel Calderón Trilla, and Colin Runciman.
A simple incremental development of a property-based testing tool (functional pearl).
Unpublished draft, 2017.

Lukas Bulwahn. Smart testing of functional programs in Isabelle. In LPAR 2012, LNCS
7180, pages 153–167. Springer, 2012.

Lukas Bulwahn. Counterexample Generation for Higher-Order Logic Using Functional and
Logic Programming. PhD thesis, 2013.

R. Mike Cameron-Jones and J. Ross Quinlan. Efficient top-down induction of logic pro-
grams. SIGART Bulletin, 5(1):33–42, Jan 1994.

Olaf Chitil, Colin Runciman, and MalcolmWallace. Freja, Hat and Hood — A Comparative
Evaluation of Three Systems for Tracing and Debugging Lazy Functional Programs, pages
176–193. Springer, 2001.

Olaf Chitil, Maarten Faddegon, and Colin Runciman. A lightweight Hat: Simple type-
preserving instrumentation for self-tracing lazy functional programs. In IFL 2016, pages
1–14. ACM, 2016.

Jan Christiansen and Sebastian Fischer. EasyCheck – Test Data for Free. In Functional
and Logic Programming, LNCS 4989, pages 322–336. Springer, 2008.

Koen Claessen. Shrinking and Showing Functions. In Haskell’12, pages 73–80. ACM, 2012.

Koen Claessen and John Hughes. QuickCheck: A lightweight tool for random testing of
Haskell programs. In ICFP’00, pages 268–279. ACM, 2000.

Koen Claessen, Colin Runciman, Olaf Chitil, John Hughes, and Malcolm Wallace. Testing
and tracing lazy functional programs using QuickCheck and Hat. In AFP’03, LNCS
2638, pages 59–99. Springer, 2003.

Koen Claessen, Nicholas Smallbone, and John Hughes. QuickSpec: Guessing Formal Spec-
ifications Using Testing. In TAP 2010, LNCS 6143, pages 6–21. Springer, 2010.

Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. Hipspec: Automat-
ing inductive proofs of program properties. In Workshop on Automated Theory eXplo-
ration: ATX 2012, 2012.

138

BIBLIOGRAPHY

John Horton Conway. Regular algebra and finite machines. Chapman and Hall, 1971.

Nils Anders Danielsson and Patrik Jansson. Chasing bottoms. Mathematics of Program
Construction, page 85–109, 2004.

R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints on test data selection: Help for the
practicing programmer. Computer, 11(4):34–41, April 1978.

Jonas Duregård. The testing-feat package, v0.4.0.2, 2014. URL http://hackage.haskell.
org/package/testing-feat.

Jonas Duregård, Patrik Jansson, and Meng Wang. Feat: functional enumeration of alge-
braic types. In Haskell’12, pages 61–72. ACM, 2012.

Jonas Duregård. Enumerative Testing and Embedded Languages. Licentiate thesis,
Chalmers University of Technology, 2012.

Jonas Duregård. Ultra-Lightweight Black Box Mutation Testing. https://youtu.be/
ROKxri62WYQ, 2014.

Jonas Duregård. Automating Black-Box Property Based Testing. PhD thesis, Chalmers
University of Technology, 2016.

Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco,
Matthew S. Tschantz, and Chen Xiao. The Daikon system for dynamic detection of
likely invariants. Science of Computer Programming, 69(1):35–45, 2007.

George Fink and Matt Bishop. Property-based testing: a new approach to testing for
assurance. ACM SIGSOFT Software Engineering Notes, 22(4):74–80, 1997.

George Fink and Karl Levitt. Property-based testing of privileged programs. In Com-
puter Security Applications Conference, 1994. Proceedings., 10th Annual, pages 154–163.
IEEE, 1994.

George Fink, Calvin Ko, Myla Archer, and Karl Levitt. Towards a property-based test-
ing environment with applications to security-critical software. In 4th Irvine Software
Symposium, pages 39–48, 1994.

Gordon Fraser and Andrea Arcuri. Evosuite: Automatic test suite generation for object-
oriented software. In ESEC/FSE ’11, pages 416–419. ACM, 2011.

John Gannon, Paul McMullin, and Richard Hamlet. Data abstraction, implementation,
specification, and testing. ACM Transactions on Programming Languages and Systems
(TOPLAS), 3(3):211–223, 1981.

The GHC Team. The Glasgow Haskell Compiler. https://www.haskell.org/ghc/, 1992–
2017.

139

http://hackage.haskell.org/package/testing-feat
http://hackage.haskell.org/package/testing-feat
https://youtu.be/ROKxri62WYQ
https://youtu.be/ROKxri62WYQ
https://www.haskell.org/ghc/

BIBLIOGRAPHY

Andy Gill. Debugging haskell by observing intermediate data structures. Electronic Notes
in Theoretical Computer Science, 41(1):1, 2001. Also in Haskell’00.

Andy Gill and Colin Runciman. Haskell Program Coverage. In Haskell’07, pages 1–12.
ACM, 2007.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated random
testing. In PLDI ’05, pages 213–223. ACM, 2005.

Gordon J. Uszkay and Jacques Carette. GenCheck Tutorial. https://github.com/
JacquesCarette/GenCheck/blob/master/tutorial/GenCheck_Tutorial.pdf, 2012.

Martin Hofmann and Emanuel Kitzelmann. I/O guided detection of list catamorphisms:
Towards problem specific use of program templates in IP. In PEPM’10, pages 93–100.
ACM, 2010.

Martin Hofmann, Emanuel Kitzelmann, and Ute Schmid. Porting Igor II from Maude to
Haskell. In AAIP 2009, Revised Papers, pages 140–158. Springer, 2010.

John Hughes. Software Testing with QuickCheck, pages 183–223. Springer, 2010.

John Hughes, Ulf Norell, Nicholas Smallbone, and Thomas Arts. Find More Bugs with
Quickcheck! In AST ’16, pages 71–77. ACM, 2016.

Graham Hutton. Programming in Haskell. Cambridge University Press, 2nd edition, 2016.

Yue Jia and Mark Harman. An analysis and survey of the development of mutation testing.
IEEE Transactions on Software Engineering, 37(5):649–678, Sept 2011.

Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen. Hipster: Integrating
theory exploration in a proof assistant. In CICM 2014, pages 108–122. Springer, 2014.

Simon Peyton Jones, editor. Haskell 98 Language and Libraries, The Revised Report.
Cambridge University Press, 2003.

Stefan Kahrs. The Primitive Recursive Functions are Recursively Enumerable, 2006. URL
http://www.cs.kent.ac.uk/people/staff/smk/primrec.pdf.

Susumu Katayama. Power of brute-force search in strongly-typed inductive functional
programming automation. In PRICAI 2004: Trends in Artificial Intelligence, LNAI
3157, pages 75–84. Springer, 2004.

Susumu Katayama. Systematic search for lambda expressions. In TFP 2005, 2005.

Susumu Katayama. Recent improvements of MagicHaskeller. In AAIP 2009, Revised
Papers, LNCS 5812, pages 174–193. Springer, 2010.

140

https://github.com/JacquesCarette/GenCheck/blob/master/tutorial/GenCheck_Tutorial.pdf
https://github.com/JacquesCarette/GenCheck/blob/master/tutorial/GenCheck_Tutorial.pdf
http://www.cs.kent.ac.uk/people/staff/smk/primrec.pdf

BIBLIOGRAPHY

Susumu Katayama. An analytical inductive functional programming system that avoids
unintended programs. In PEPM’12, pages 43–52. ACM, 2012.

Tom Sydney Kerckhove. Signature Inference for Functional Property Discovery. Masters
thesis, ETH Zürich, 2017.

Emanuel Kitzelmann. Data-driven induction of recursive functions from input/output-
examples. In AAIP 2007, pages 15–26, 2007.

Emanuel Kitzelmann. Inductive programming: A survey of program synthesis techniques.
In AAIP 2009, Revised Papers, pages 50–73. Springer, 2010.

Donald Knuth and Peter Bendix. Simple word problems in universal algebras. In Automa-
tion of Reasoning, pages 342–376. Springer, 1983.

Pieter Koopman, Artem Alimarine, Jan Tretmans, and Rinus Plasmeijer. GAST: Generic
automated software testing. In Implementation of Functional Languages, LNCS 2670,
pages 84–100. Springer, 2003.

Dexter Kozen. A completeness theorem for kleene algebras and the algebra of regular
events. Information and Computation, 110(2):366–390, 1994.

Bob Kurtz, Paul Ammann, Marcio E. Delamaro, Jeff Offutt, and Lin Deng. Mutant
subsumption graphs. In IEEE 7th International Conference on Software Testing, Veri-
fication and Validation Workshops (ICSTW), pages 176–185, 2014.

Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce. MuCheck. https:
//bitbucket.org/osu-testing/mucheck.git.

Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce. Mutation testing
of functional programming languages. Technical report, Oregon State University, School
of Software Engineering and Computer Science, 2013.

Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce. MuCheck: An
extensible tool for mutation testing of Haskell programs. In ISSTA 2014, pages 429–432.
ACM, 2014.

Fredrik Lindblad. Property directed generation of first-order test data. In TFP’07, pages
105–123, 2007.

Brian Marick. How to misuse code coverage. In International Conference on Testing
Computer Software, pages 16–18, 1999.

Simon Marlow, editor. Haskell 98 Language and Libraries, The Revised Report. 2010.

Stephen Muggleton. Inverse entailment and progol. New Generation Computing, 13(3):
245–286, Dec 1995.

141

https://bitbucket.org/osu-testing/mucheck.git
https://bitbucket.org/osu-testing/mucheck.git

BIBLIOGRAPHY

Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing. John
Wiley & Sons, 3rd edition, 2011.

Matthew Naylor and Colin Runciman. Finding Inputs that Reach a Target Expression. In
Source Code Analysis and Manipulation, 2007, pages 133–142. IEEE, 2007.

Max S. New, , Burke Fetscher, Robert Bruce Findler, and Jay McCarthy. Fair enumeration
combinators. Journal of Functional Programming, 27, 2017.

Henrik Nilsson. Declarative Debugging for Lazy Functional Languages. PhD thesis, 1998.

Henrik Nilsson and Jan Sparud. The evaluation dependence tree as a basis for lazy func-
tional debugging. Automated Software Engineering, 4(2):121–150, Apr 1997.

Rickard Nilsson. Scalacheck: the definitive guide. 2014.

A. Jefferson Offutt and Roland H. Untch. Mutation Testing for the New Century, chapter
Mutation 2000: Uniting the Orthogonal, pages 34–44. Springer, 2001.

Bryan O’Sullivan, John Goerzen, and Donald Bruce Stewart. Real World Haskell. O’Reilly,
2008.

Carlos Pacheco and Michael D. Ernst. Randoop: Feedback-directed random testing for
java. In OOPSLA ’07, pages 815–816. ACM, 2007.

Manolis Papadakis and Konstantinos Sagonas. A proper integration of types and function
specifications with property-based testing. In Erlang’11, pages 39–50. ACM, 2011.

Lee Pike. Smartcheck: Automatic and efficient counterexample reduction and generaliza-
tion. In Haskell’14, pages 59–70. ACM, 2014.

J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In ECML-93: European
Conference on Machine Learning, pages 1–20. Springer, 1993.

Jason S Reich. Property-based Testing and Properties as Types: A hybrid approach to
supercompiler verification. PhD thesis, University of York, 2013.

Jason S. Reich, Matthew Naylor, and Colin Runciman. Advances in Lazy SmallCheck. In
IFL’13, LNCS 8241, pages 53–70. Springer, 2013.

Rich Hickey and Reid Draper. test.check. https://github.com/clojure/test.check,
2013–2017.

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. SmallCheck and Lazy Small-
Check: Automatic exhaustive testing for small values. In Haskell’08, pages 37–48. ACM,
2008.

142

https://github.com/clojure/test.check

BIBLIOGRAPHY

Arto Salomaa. Two complete axiom systems for the algebra of regular events. Journal of
the ACM (JACM), 13(1):158–169, 1966.

Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing engine for C,
volume 30. ACM, 2005.

Tim Sheard and Simon Peyton Jones. Template meta-programming for Haskell. In
Haskell’02, pages 1–16. ACM, 2002.

Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes induce fixes?
ACM SIGSOFT Software Engineering Notes, 30(4):1–5, 2005.

Nicholas Smallbone. Property-based testing for functional programs. Licentiate thesis,
Chalmers University of Technology, 2011.

Nicholas Smallbone. Lightweight verification of functional programs. PhD thesis, Chalmers
University of Technology, 2013.

Nicholas Smallbone and Tobias Gedell. Infer complexity of algorithms by testing. https:
//github.com/nick8325/complexity, 2013–2017.

Nicholas Smallbone, Moa Johansson, Koen Claessen, and Maximilian Algehed. Quick
specifications for the busy programmer. Journal of Functional Programming, 27, 2017.

Calvin Smith, Gabriel Ferns, and Aws Albarghouthi. Discovering relational specifications.
In ESEC/FSE 2017, pages 616–626. ACM, 2017.

Jacob Stanley. Hedgehog. https://github.com/hedgehogqa/haskell-hedgehog, 2017.

Don Stewart and Spencer Sjanssen. XMonad. In Haskell ’07, pages 119–119. ACM, 2007.

Phil Stocks and David Carrington. A framework for specification-based testing. IEEE
Transactions on Software Engineering, 22(11):777–793, 1996.

Nikolai Tillmann and Wolfram Schulte. Parameterized unit tests. SIGSOFT Software
Engineering Notes, 30(5):253–262, September 2005.

Michael Walker and Colin Runciman. Cheap remarks about concurrent programs. Pre-
sented at TFP’17, 2017.

Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. Multiple-view trac-
ing for Haskell: a new Hat. In Haskell’01, pages 182–196. ACM, 2001.

Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage and
adequacy. ACM Computing Surveys, 29(4):366–427, December 1997.

143

https://github.com/nick8325/complexity
https://github.com/nick8325/complexity
https://github.com/hedgehogqa/haskell-hedgehog

	Introduction
	Motivation
	Thesis statement
	Contributions
	Chapter Preview

	Literature Review: property-based testing and its applications
	Property-based Testing Tools
	QuickCheck: automated random testing
	SmallCheck: exhaustive testing for small values
	Lazy SmallCheck: using laziness to guide enumeration
	Feat: Functional Enumeration of Algebraic Types
	Neat: Non-strict Enumeration of Algebraic Types
	GenCheck: generalized testing
	Irulan: implicit properties
	Reach: finding inputs that Reach a target expression
	SmartCheck: improving counterexamples
	Hedgehog: integrated shrinking
	Beyond Haskell
	Discussion and Comparison

	Applications of Property-based testing
	QuickSpec: discovery of equational laws
	EasySpec: signature inference for property discovery
	Bach: discovering relational specifications
	MuCheck: syntactic mutation testing for Haskell
	Lightweight Mutation Testing in Haskell

	Summary

	LeanCheck: enumerative testing of higher-order properties
	Introduction
	Listable Data Types and Fair Enumeration
	Testable Properties and Tiers of Tests
	Conditional Properties and Data Invariants
	Higher Order Properties and Listable Functions
	Example Applications and Results
	Comparison with Related Work
	Conclusion

	FitSpec: refining properties for functional testing
	Introduction
	Definitions
	How FitSpec is Used
	How FitSpec Works
	Enumerating Mutants
	Testing Mutants against Properties
	Searching for Survivors
	Conjecturing Equivalences and Implications
	Controlling the Extent of Testing

	Example Applications and Results
	Boolean Operators
	Sorting
	Binary Heaps
	Operations over Sets
	Powersets and Partitions
	Operations over Digraphs
	Performance Summary

	Comparison with Related Work
	Conclusions and Future Work

	Speculate: discovering conditional equations and inequalities by testing
	Introduction
	Definitions
	How Speculate is Used
	How Speculate Works
	Equational Reasoning based on Term Rewriting
	Equations and Equivalence Classes of Expressions
	Inequalities between Class Representatives
	Conditional Equations between Class Representatives

	Example Applications and Results
	Finding properties of basic functions on lists
	Sorting and Inserting: deducing their implementation
	Binary search trees
	Digraphs
	Regular Expressions
	Performance Summary

	Comparison with Related Work
	Conclusions and Future Work

	Extrapolate: generalizing counterexamples of test properties
	Introduction
	How Extrapolate is Used
	How Extrapolate Works
	Searching for counterexamples
	Unconditional generalization
	Conditional generalization

	Example Applications and Results
	A sorting function: exact generalization
	A calculator language
	Stress test: integer overflows
	A serializer and parser
	XMonad
	Generalizations as property refinements
	Performance Summary

	Comparison with Related Work
	Conclusions and Future Work

	Conclusions & Future Work
	Summary of Contributions
	Conclusions
	Future Work

	Bibliography

